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i. Introduction

: * This report is intended to give a complete unified

discussion of the electromagnetic response of a plane stratified

structure. The geophysical literature is full of various bits

and pieces of analysis. Most often these papers deal with very

specific problems, i.e. vertical magnetic dipole over a

conductive 2 layer earth. The objective of this report is

two-fold. First a detailed and comprehensive analysis of the

theoretic_l parts of the electromagnetic response is given with

the emphasis on the physical meaning of the somewhat messy

mathematical expressions. An attempt is also made to use a

meaningful notation, which, hopefully, is not too cluttered.

With a clean compact development of the theory in hand, the

more interesting and much more difficult problem of actually

using it will be tackled. It is at this point where the

particular problem at hand must be considered. The actual

theoretical expressions for the fields in a stratified

medium can be obtained in closed form and take the form of

Hankel transforms or 2-dimensional Fourier transforms. The

numerical problem of actually computing numbers for the

electromagnetic field strengths is that of performing some

type numerical or approximate quadrature technique to

evaluate the integrals describing the fields. The particular

context of most interest here is the response of low-loss

dielectric media. Much of the numerical analysis is, therefore,

%
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devoted to problem$in this area. The analysis of conductive

media, while quite different in behaviour and geophysical

! interest, is not very far removed from the theoretical analysis

and the numerical difficulties are not as accute as for the

low-loss problem. While these problems will not be analysed

in detail, a few side excursions into some interesting points

will be made.

2. Basic Physics & Mathematical Descriptions

The basic physics of electromagnetic theory is totally

wrapped up mathematically when Maxwell's equations and the

constitive equations are written down. While the details from

this point on are usually specific, a wide variety of interesting,

and at first glance, unrelated phenomena pop out when these

equations are manipulated about. It is the physical interpretation

and understanding of the results obtained from the mathematically

simple basic equations which _exciting. In fact, in the

last eighty years, these basic equations have provided food for

thought and controversy of some of the most brilliant minds.

Even many of these people have missed the beauty of the analysis

and have gotten too wrapped up in the details to appreciate the

subtl_ unity of the various facets of Maxwell's mathematical

description of basic electromagnetic phenomena.

The analysis from here on will be conducted using the

rationalized_M_S system of units. The time dependent form of

Maxwell's equations is
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.... VxE = -__BB (2-1) _xH = J + _D (2-2)
_t _t

_.D = q (2-3) _;.B = 0 (2-4)

In order to completely define an electromagnetic problem

(no-mechanical coupling here) the constitive equation

introducing the electromagnetic properties of media when

treated on the continuum scale are required. These equations are

= _'H + _oM--s (2-5)

J = aE + Js (2-6)

D -- c_ + Fs (2-7)

E, D, B, H, J have their conventional meanings; q is the

electric charge density; _J' a', ¢', are the permeability,

permittivity and electrical conductivity subscripts o (i.e. _o)

are used to indicate free space values ; _s, _s are impressed

magnetic and electric dipole moment den._.ities and _s is an

impressed electric current density.

For time-varying problemait is convenient to define

generalized electric and magnetic source current densities

namely

_s = _s + _s (2-8)

_t

'; _, " _, DR, (2-9)
_t

Now, combining Maxwell's equations with the linear isotropic

i

i
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constitive equations (2-5,-6 and -7) one has

8t Bt

plus the continuity equations

_q = -V.?-- - _._ = -_'_--s - _'_- _'_' (2-12)s
_t

Jw

V,4_ 5 + _--._H = 0
_t (2-13)

or U. _.M--=+ 5._ = 0

For most applications, the response of sinusoidally time

varying fields is of most interest. The individual sinusoidal

responses can be built into transient responses with the aid of

the Fourier integral. The following time-frequency Fourier

transform pair is adopted for the rest of the analysis

f(t) = ' _ f{_)e "j@t dt_ (2-14)

f(_) = l-_ fit) e j=c dt (2-15)

Upon Fourier transformation, the frequency domain equations

become

_x_ = j_H + _ (2-16) _x_ = (CL j_ + _s (2-17)

q - + _._ + _._ (2-l,)

_._ - j_. _ = o (2-z9)
For time-varying field analysis, it is convenient to lump

electrical conduction and displacement currents into one term

by defining the complex permlttivity

¢ = c_l�J o') (2-20)
we w
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or the complex conductivity

= (o'- j_C_ (2-21)

In the following, the complex permittivity is adapted

since the primary applications will be to low-loss dielectrics.

The electric loss-tangent is defined as

= _ (2-22)tan6 e __
(uc0

Therefore

£-- E°(l + j tan6e) (2-23)

In addition, time-varying magnetic losses are introduced

by defining a complex permeability with an analogous form

to E, namely,

= u'(l + j tan_ m) (2-24)

With this formalism of getting notations clear, one can now

get down to the business at hand.

The frequency domain wave equations for the • and _] field

are obtained by taking the curl of equations (2-16) and (2-17)

with the result.

_x_x_ - k2E + j_ x _11 = jW_._s + _ x _6 (2-25)

and

_'X_"_- k2H" - jie g x _1_ = -j_ + _ X _S (2-26)

where k = m/%_i is the propagation constant. The symmetrical

; form of equations 2-25 and 2-26 is a result of the careful choice

i of definitions developed above.

The terms _rx_ and _x_c enter since _ and c may be functions

of spatial position. In the following analysis _ and c will always

l
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be taken as constant in various spatial regions with step

discontinuities between the regions. The terms I_x_'_ and

E--x_ are dropped from the equations. These terms are

essentially replaced by the usually boundary conditions at

the interfaces between the two regions, namely, continuity

of normal B, D, J and tangential _ and _ fields.

3. Hertz Potentials r Point Sources and Particular Solutions

a) Hertz Vector Potentials

At this point in the analysis it is of interest to

consider the case of a source in a whole-space of constant

material properties. This leads immediately to the concept of

Hertz-potentials. The natural manner to progress is to

consider the electric field from electric currents and the

magnetic fields for magnetic currents.

vx_ xE - k2_ " +J_J_s (3-1)

These equations are mathematically equivalent and are

transverse vector wave equations.

Since a vector field can be split into transverse and

longitudinal components,

- + E-t (3-3)

x E% - O _- Et = o (3-4)

one has

" k2EL " J""_s% (3-6)

I
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A similar decomposition of the ._ field and M--s can be written

down.

In this context, the transverse component of E satisfies

the transverse vector wave equation while _t and '.sL

are linearly related. A mu:h more expedient way of developing

E is to define with its longitudinal and transverse components

in terms of a single vector field, namely,

k

gt= %, (3-9)

(Note: I is the unity dyadic or tensor)

_e is known as the electric Hertz potential an@ satisfies

the total vector wave equation

_'w_X]Te- _'_e - k2 _e = J_u_s (3-10)

or V2_. %. -j_ (3-_

where _ = -v-xv x �_1$' �¬�Laplacianoperator

Thus ITe satisfies the vector Helmholtz equation (wave equation

with time dependence transformed out).

Similarly, H can be expressed in terms of a magnetic Hertz

potential

H - 11 + vQj. _m 13-121

and

_,2_m, k2 _ - j_, ,_--_.3}

iP
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The electzic and magnetic fields associated with the magnetic

and electric currents are obtained from the Hertz potentials

as follows

s -e------
3_u 3_

and similarly

-3_¢ -3_
The total electric and magnetic fields are then given by

j.""C

(b) Point Sources

The development of the response of a system to an

arbitrary excitation is most easily done using the Green's

theory approach. In other words, the response of the system

to excitation at a point is used to develop the solution for

arbitrary excitation. In the electromagnetic context, the

point excitation function are point electric and magnetic

dipoles.

Thus

-6c - F') (3-18)
s

_s "_(_- _') _ _3-19)

where _'is t_e location of the point source,S is the direction

of the dipole moment and 6 is th, three dimensional Dirac delta

function.

Examples 5

The point source are basic building blocks for analysing

any other source configurations.
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Electrical Current:

m • , . • ,

A wire of infinitesimal cross section carrying Iamps

_f current can be composed of point dipoles each representing

an infinitesimal section of the wire

..... ,
_S " J " _I dl} 5(r - r.) /_ (3-20)

Time Varyin_ Electric Dipole Momen% °

The electric 6ipole foment is _Oq d_+q_

P--s" q d]; 61r - r ) (3-21) i

,_s= _Ps = -jwqdT 6(r - r'l

_t
= Id£ 6(r - r ) (3-22) I = -j_q (3-231

Time Varying Magnetic Dipole Moment

A point magnetic dipole can be visualized as an

infinitesimally small loop of wire car.Tin q Iamps.

The magne'_Ic dipole moment density ks

defined as

R m IdA6(r - r') 8 (3-24) _ - unit normal to dA

where IdA remains finite as dA_ o in the usually point source

sense.

The associated magnetic current is

F& . -Jbuo (3-2s)

- -j_oIdA 8(r - r _} s

Partlcular Solutlons

The first stage of analysis before conti-_vi.n_ to more i

1975008236-012
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If complex problems is to find the solution for the electric and

magnetic Hertz potentials for a point source excitation. These

are denoted as the particular or inhomogeneous solution to

the vector Helmholtz equation. The basic partial differential

equation is

_2 lie + k 2 _e = -(J(_U 6 (r - r') _ (3-26)

It is obvious that the particular solution can be expressed as

= np _ (3-27)

and that Ep satisfies the scalar Helmholtz eouation

V2Ep + k2_p = -c 6(r - r _) (3-28)

The particular solution is the well known spherical wave form

= C e jkJ_ - r'J (3-29)
P

4nl? -'-r I

4. Plane Wave Spectrum Representation

In the analysis of plane stratified media, the plane wave

spectrum approach is applied to obtain the solution of the boundary

value. This is the physical interpretation of the mathematical

manipulations. The mathematical basis for the development are the

Fourier transform and Hankel transform integrals.

The basic coordinate systems to be used in the later _nalysis

are shown in figure 4-1. The Cartesian coordinates are denoted by

(xI x 2 x3) and the associated unit vectors are (el e2 e3 )" The

cylindrical coordinates are denoted by (_,_, 2 ) and the associate
A

unit vector (_,_, Z). The coordinates are related by

! x 2 = _sin (4-i)

3
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The plane wave spectrum is developed form the Fourier integral

starting with the scalar Helmholtz equation of the last section

_2_p + k2Ep = -(6C(_- _'))

and taking _! to be the origin, the 2-dimensional Fourier

transform pair are

1 (" j (llXl+12X2)

np(xlx2x3)-  ( 112x3)e d11d12 (4-3)

li -J(IIXI+I2X 2)Ep (I112X3) = (XIX2X3) e dXldX 2 (4-4)

Combining 4-2 with 4-3, the p.d.e, reduces to the ordinary

differential equation

d2_p + (k2 -I 2 ) _p = -C 6 (X3) (4-5)

dX32

where 12 = 112 + I_

The homogeneous solutions to 4-5 have the form

etj(k 2 - 12 )% X3 (4-6)

while the particular solution to 4-5 is

Up = e j(k2 - 12)% IX31 (4-7)

°2j (k2 ,12 %Defining __ (k2_12)% - _-3 can be written as

_p (XIX2X3) = 1 il _---ej(llxl + 12X2 +_ Ix31 ) (4-8)

• _ -_ -2j_ e-J 6;t d11dl 2

The rational for the plane wave spectrum terminology is

from the form of 4-8. The integrained is a plane wave ( the final

factor in curly brackets is to emphasize the wave nature of the

I integrand) and the integral is over all possible wave numbers

in the _i - _2 plane. In fact_ l_!_ is the spectral amplitude of

2J _
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I Ep in Xl-X 2 (X3=0)plane and the amplitude can be continued

upward or downward in space by multiplication by the factor e_,X3:41 1

It is readily seen that _ is the vertical component of the I

propagation vector _ = (lI, 12, _ )•

The double Fourier transform 4-8 is the Fourier form of

the well-known SOmmerfeld integral (1909, 1949), Watson (1966).

Since the SO.nmerfeld integral is most often given as a Hankel

transform, 4-8 will be rewritten in this notation. 1

Defining _ in cylindrical coordinates (I,0,Y),4-8 becomes •

1 ej +  rzY) !_p (XlX2X 3)

4_ 2 o o _ IdldO !

(4-9)

Noting that the integral definition of Jn (Z) is

_2

Jn(Z) -- i-n i cos n_ eiZ cos_:
-o 2_ _i

= (i)-n cos_ e iZ c°s_ d_ (4-i0)
2_ ,o

4-9 can be rewritten as®

1 _ le j; IZI Jn (I_) dl (4-ii)
Ep(XlX2X3) =

4-F o
which is the Hankel transform representation of the Sommerfeld

integral. The evaluation of 4-11 is given by Watson (1966)

13.47.4, namely,

< Jo(bt) e_a(t2 _ y2)_ tdt = e+ly3a2 " b2_ (4-12),

y2'0 (t2 - )_ ia 2 + b 2

In the remaining discussions the Hankel transform

notation is adopted since is the point dipole sources of interest

have particularly simple angular symmetries.

i
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I 5. Plane-Stratified Medium
Much of the remaining discussions revolve around the

response of point dipole sources in a plane stratified

environment. At this point, the stratification, notation,

and geometrics will be briefly outlined in order that these

details are available for use later.
u

In the geophysical context, it is common to denote a

structure as consisting of N plane layers. The N layer

notation here is used to imply that there are N + 1 regions

of different material properties w_th N-1 of these regions

sandwiched between 2 half-spaces. Thus a whole-space is a

0 layer structure, 2 adjoining halfspaces are a I layer

structure and a thin strip between 2 halfspaces is a 2 layer

structure.

The general geometry is shown in Fig. 5-1. The planar

symmetry is parallel to the X 1 - X 2 coordinates. The upper

most region is denoted region 0 while the lowest layer

(half-space bouding the structure on the bottom) is region N.

The N-plane interfaces between the regions are located at

depths Z = d b . Each layer is assigned a pair of constant

complex _terial properties (permittivity and permeability)

E1,uo . An additional parameter which is useful is the

_lickness of the individual layers t.. The structure just
I

described has cylindrical symmetry about the x_o, _ axis

1975008236-017
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I i3 or Z

F//---------_X2 Region

X1
0

: £._.
Z = dI

tl _i_I 1

Z = d2
t2 E2U2 2

3

P

s

Z = dN_ 1 tN-I eN-i _N-I N-I

z=d N
e N l_N N

Layer thickness tl = I_i,, -d_l = di - ai_, since z upward.

Layer propagation constant k_ =)_z_ _U |

Fig. 5-1
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6. Solution of Wave Equation in Plane-Stratified Medium;

I
TE and TM Fields

6-1 Hertz Potentials and TE-TM Fields

The basic wave equations for the electric and magnetic fields

in a whole-space were discussed in section 3. As was discussed

in that section, it is most convenient to express the fields in

terms of electric and magnetic Hertz potentials which satisfy the i

vector He!_oltz equations

I_ Ource term I

with hhe electric and magnetic fields given by 3-16 and -17.

At this point it is best to get a subscript notation

clarified in order that the region in question is contained

in the equations. Thus, the Hertz potentials will be denoted

where the superscript denotes electric or magnetic and the

subscript denotes the region i. Thus the homogeneous electric

Hertz potential satisfies

�k2--0 (6-3)
1 1

in regions.

For the electromagnetic problem, the Hertz potentials have

only _ components. As a result one has to work with only 2

scalar potentials rather than 2 vector potentials

1975008236-01g
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and 6-3 reduces to the scalar Helmholtz equation.

Examination of the electric and magnetic fields associated

with the 2 components of the Hertz potentials shows physically

why the potentials with only Z components are appropriate. From

3-16 and -17 the fields of He are
1

ne Fields
i

_i = Z _e + _ _ (6-6)
i ,2 --

H-i = _ x o _ (6-7)
l

---J_Ui

Hm Fields

+ (6-8)Ei x (6-9)
_i _Z j_zie

Examination of 6-7 and 6-9 shows that Hi generates an electro-

magnetic field which always has its magnetic fielO in a plane

perpendicular to the Z axis. In other words Z.H is zero at all

the planar interfaces in the structure. Similarly, H_ generates

the analogous electromagnetic field which has Z.E _ 0. Referring

back to section 4 and the description of fields as superpositions

of plane waves, the fact that H_ and Km have only Z components1

has a physical significance. From basic electromagnetic theory,

a plane wave incident on a plane interface car, be split into two

components, one with _._ _ 0 and one with _._ _ 0 where _ is the

normal to the pltnar interface. The selection of the above

description for the Hertz potentials yields the generalized form

of this result.

An alternate notation for the two types of fields is now

1975008236-020
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adopted. In accordance with waveguide analysis, the Ii_ fields

are denoted transverse magnetic (TM) fields while the _ fields

are denoted transverse electric (TE) fields. In instance where

the both types of field appear, the two components are denoted

as

(TE _, TM _) (6-10)

(TE _, TM _)

6-2 General Form of the Hertz Potentials

The general,homogeneous solution of the Helmholtz equation

for the problem at hand can be written down immediately. Using

the cylindrical symmetry of the boundaries, the potentials are

e cos, ..',c e c j_Z
= sAm (I) ej_|z + SB_(1)e- Jn (I_)

_ sin _nCJ n i n i

+ Cn(1)_n(lf) (6-11)

The subscripts and superscripts should be self-explanatory. For

the problems at hand only waves propagating radially outward from

a source at the center are excited and C_(1) = 0. In the above,

is the radial wavenumber as discussed briefly in section 4,

while _ = (k 2 _ _2)% is the vertical wavenumber in the ith

medium.

The general solution will take the form, for example,

ne = Z cos (n¢) SA (I) I • _B i (I) _ Jn ( ) dl 6-12)i n sin n i

which is remaniscent of the particular solution in the form of

4-11.
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7 Transmission Matrices and N-Layered Structure Reflection

i, Coefficients

7-1 General Boundary Conditions

In the last section, the basic mathematical formalism

for the fields in the layered structure. From 6-12, the problem

at hand is that of finding the coefficients _s B e (A). Once
n i

these coefficients are determined the formal mathematical part

of the analysis is complete.

The exact form of the coefficients depends on the nature

of the source. In this section, the relationships between the

m in

Ae and B? in different regions are developed. The results of this
i x

section hhen lead to the determination of particular form of the

coefficients for different excitations which amediscussed in

section 9.

lhe boundary conditions on electromagnetic fields at the

interface between any two regions are that the tangential

components of the E and _ fields must be continuous. Thus

x E-i = z x (v-1

Z x Hi = Z x Hi±l

In terms of TE and TM fields, the tangential components of

the fields are

TM Fields

Transverse = e (7-2)
2_ _i

_Z

Transverse TM_ i = { x _9 (7-3)

-jwu

I
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TE F_elds

Transverse TEEi = _ x _qm (7-3)

I J_Ei m

Transverse TE_ i = 1 _t a_i i

k_ az (7-4) :
'\ C_

where Vt = _ >: _ _ ,.

7-2 TM Boundary Conditions

The boundary conditions on the TM fields yield constraints

e and e from one region toon the _e which in turn relate the A i Bii

another. Combining 7-1,2, and -3 one obtains the result that

e e

= _!_____! (7-5)
ei ci.-,:.1

and 1 .e e
-- 9_ = 1 _izl (7-6)

eiUi az
E ;:_ # Itl az

when

7-3 TE Boundar_ Conditions

In the same manner as for the TM fields, the boundary

conditions for the magnetic Hertz potential can be derived iD

the form m m
n._!= _-___ii (7-7)
ui ui_+l

m m

___! = 1 ,_._LL,._ (7-B)
c_ Ui az

c iz' u [$i _7'

for z = d(_+l)-

The symmetry of the two sets of boundary conditions is apparent.

" The material property factors c_ dnd _ switch places.

7-4 Transmission Matrices
o

The general solutions for and _i are
of the form 6-12.

i i
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cos

Since the sin (_) and 'J_(l_)d%factors are common, the only
o

factor which varies from region to region is

e jSiZ e ej_[ zAm (X) e + Bm (I) ('7-9)
i i

Combining 7-9 with 7-5 through 7-8 it is possible to write
e

the relationship for A_' B_ in terms of the coefficients

in the neighbouring region. In the following the TE fields

are used to illustrate the analysis

1 I;_ 1 1 --_ "_ T

' -" I- " "_ ai+1_1 !,J/.i. - _.._.' eJ_;d_,, o 'A e, e._'.i4.vdr_ o

_ " I_,_ - _ _i+I _.i+! o e _E_ [U i _( io e-jv,:l _ -- --" -J'fi,'_di_t_Bi_-
(7-10)

This result can be regroupedand written

= IuTE _, im+l (7-n_

i !_. Bi+l

where

¢i p +j,_idi+ll[_ ..j d. o

0 e-j'_ :" @ i,,, / (7-12)

1 z_

lo +] -1 is the TE transmzsslon matrlx for the boundary at

Z = d_., and relates the fields in region i to those in i �i"

Similarly, a matrix describing region i + 1 in term.-, of i can be

written down and is

-I

The coefficients RTE TTM
i) i+l and i,i h�arethe Fresnal TE plane wave

reflection and transmission coefficent.

1975008236-024
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RTM = ui+l_.i - ui<i+l (7-14)

I _ __'[ _i+l i_+ ui_i+!

T.TE = 1 • RiTE = 2 ui+l"i (7-15)
i*l i+l ui+fi + ui _'_

°

,[

In a similar fashicm the TM c.,_.:_cients can be transmitted

across an interface using th,; _"_,transmission matrix which

takes the form

- r q.Ae. •

1 '= i)i À(7-16)Be _ - -i_i

where

< U.TM , _ e-j,idi+l o TTM ' _ d.
Ti_ i+l i *_ ,_, O_ i ,i+l_ " ui-!-'-_ i ,i+l e3 :'_

_i+l ' ,_idi+l RTM ! "'
-- !P ej ' -- l--l--- l o e-] ,,;., d ;.,

mTM .i
- £ ,i+l T_i+l (7-17)

RIM TMi+l and T i i+l are the Fresnel TM plane reflcction and

trangmission coefficients which have the form

R_,i+l = ci+l_i - _i"i_l (7-18)
ci+l_i + ciyi+l

T_,i+l - 1 + P_i+l - 2 ci+l',i (7-19)
¢i+!'i + ei.'i+l
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The matrix .-oration can be extended co relate region i with

region o or region N.

Ui, i ÄX
¤�,UN-I N / (7-20)
/ Bi ' i BN l

L I

' i= Ui, i-I Vi-1 _i-2 ........ U1,0 (7-21)

Any other pair of layers can be related in a similar fashion.

N-Layer Reflection Coefficient

In the same manner as one expresses the respon _ of a

single interface by a Fresna! reflection coefficient, a more

generalized reflection coefficient can be defined for a stack

of an arbitrary number of layers. From examination 7-9 and

6-12, it becomes readily apparent that the Ai_ coefficients are

the amplitudes of waves propagating in the positive Z direction

while the B_ are the amplitudes of waves propagating in the
1

negative Z direction

1

Region '_ Bi , Ai

Now consider the simplest case of a wave incident on the stack

N-layers from region o. Bo is the amplicJde of the incident wave

and Ao is the amplitude of the wave reflected from the stack

o so Ao
... .,
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A generalized reflection ientco_C=_c is defined as

Ao
R = (7-22)

Bo

It should be noted that in the wave number domain, a fixed

I cerresponds to a plane wave incident on the stack in the FT

domain and a single cylindrical wave in the Henkel Transform

domain.

i.e. Bo(1) = _(i- io) (7-23)

A very useful representation for R is obtaine_ from the |!

ltransmission matrix formalism. For the example at hand one

can wzite
1 i'-

_ _wn w121 IA1 (7-24)

.- !w21 w22 ! iB1

|

(Note that the development is the same for both TE an_ %'M

typ_ fields so no distinction is made here). Thus the reflection

coefficient becomes

1

R = _ = Wll A1 + Wl2B 1
Bo

w21 A1 + w22B 1 |

i(7-25)
= Wll +

\%7w21 1'

Thus R - AO/BO is expressible in terms of (AI/B I) plus some

parameters depending on the electrical properties. Now the

I

#- 1
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same thing can be done to _epresent (AI/B I) in terms of (A2/B 2)

etc. down to cegion (A_./B,__). Since there is no source in

region N, only downward propagating waves can exist and

(Aw/B"_) = 0. Thus

1 'w12 Wll
R = Wll +_ 1

2 2 '_\
/I + wl I /W_l +/W12 - Wll \ !

\ T/-_- T T ,
w21

w22 _w21 kw22 ./
2"i 3 N- N

II • w21 ./Wll ii • w-_I_ w12l

\ w21 , w22
which is known in mathematical terminology as a continued

fraction expansion for R of length N with the member elements

being independent of the excitation field and dependent only

on the electrical properties and their distribution with depth

in the stack.

If,f_,r example, a particular source distribution exists in

region o, the fields to this source if the layered structure

were not present would simply be of the form

Be -j_OZ (7-27)

plus the appropriate integral over X 1 the angular symmetry etc.

The effect of the stack of layers can then be represented by

RBeJ _oZ (7-28)

and the total field by

B(e -j'_°Z + Re j/°Z) (7-29)
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While the particular case of the source in region has been

considered here, the source could actually exist in any layer

and reflection from below and above would have to be considered.

In the above, the problem of solving the response in a stack

boils down to finding the particular excitation for the given

source in a homogeneous wholespace. The layered structure

appears as an additive homogeneous solution to the origin

P.D.E. and is 3ust a factor times the whole-space of particular

solution. The application of these results to some particular

cases is discussed in the next section where a number of

examples are worked out.

8. Point Dipole Sources over an N-Layered Earth

The preceding sections give all the basic mathematical

developments required for this particular problem. The

analysis is 9n three stages; first the particular excitation

field is developed, secondly, the reduction of the particular

solution into electric and magnetic Hertz potentials which

have only vertical components is made, finally each spectral

component is reflected by its N-layer reflection coefficient.

In the following, the first case of a vertical electric !_
P

dipole is considered in some detail. The remaining examples i

!
are very similar and as much detail is omitted as is possible. I

8-1. Vertical Electric Dipole (VED) _:

The electric dipole has moment Idt and is located at a

1975008236-029



4

-27-

height h above the surface of Z= h .................

an N-layer earth. From

section three _. _ o

_: d. c

_-d. 2

-zdc Se-¢_ }
2 _y e --d_

and the particular Hertz potential is an electric Hertz

potential with a component only in the Z direction.

_ e3_°t_-_'l ^

In Hankel transform notation, using 4-11

_'--'+r"+)° '_o
Prom section 6, it is apparent that the only excitation in

this problem is circularly symmetric and n -- 0. In the region

0 < Z < h, the excitation 8-3 gives

3 ,.,+-o_

or+: - ,,,3_ + (+_+)+°

It is apparent from the source and structure symmetry that

only TM waves are excited and the reflected wave is defined

in region o by
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Table 8-1. TE and TM F_eld Components

-VE TM

Hz. + _,z ,._._
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where RTM is the TM reflection coefficient for the N-layer

stack. The total field in region o is describe he electric

Hertz potential

4-'w-

(s- _.>

The fields in other regions can be obtained using the

transmission matrices of section 7 and continuing oACo and

oB e downward.

8-2. Horizontal Electric Dipole (HED)

The other orientation for the electric dipole is in the

horizontal plane. Combination of the VED and HED solutions

yields the solution for an arbitrarily oriented dipole. For

convenience in the following, the HED is assumed aligned

in the _I or _ -=0 direction. The electric source current is

then xj

_. _, .. ,_'_'_ ....

_'WJ' 2.-.o o

The particular solution for this current

distribution is an electric Hertz potential

aligned in the _, direction.

,_._,_-_'1
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NOW the problem of solving for the effect of the layered

stack requires reducing _p into electric and/or magnetic Hertz

potentials with only a vertical component. This is achieved

by examinin_the TE and TM electric and magnetic fields in

order to find Ee and Em .
P P

From Table 8-1 it is readily apparent that the vertical

electric field is associated with _e (since generates a

totally TE field). Similarly the vertical magnetic field is

totally associated with _m This then gives the key as to

how to break Ep into its _e mo _ _o components.

From section 3, E z and Hz associated with _p are given by

C -9)

Using the Sommerfeld integral discussed in section 4,

e

In order to obtain _o' Ez has to be regrouped to the form

analogous to that in Table 8-i namely
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Noting that _2 k 2 X2= - , 8-11 can be written as

<.,-,3)

3 "41" I_o j_

and _e is readily identified as
P

In a similar manner, H is given by
Z

t

L
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The magnetic Hertz potential associated with ][ is
P

readily identified as

Analysis of _e and _m shows that _ has been split
P P P

into a TE field which has a sinusoidal variation with

azimuth and a TM field which has a cosinusoidal angular

variation. In order to find the total field in region

o, the integrands of 8-16 and 8-14 must be multiplied

by the TE and TM N-layer Fresnel coefficients and then

added to the solution. The total solution is the

The fields in the other regions are obtained by the

transmission matrix analysis of section 7.

1975008236-035



-32-

I 8-3. Vertical Magnetic Dipole (VMD)

The vertical magnetic dipole problem is analogous

to the vertical electric dipole problem and can be

obtained directly by replacing j_ by - 9_c, Idl, by

-j_o IdA and RTM and RTE. From section 3, the fields

can be expressed in terms of a magnetic Hertz potent_al

m is identical to 7[p andNow, Ep

(g-;e

The response is purely one composed of TE waves as to be

expected.

8-4. Horizontal Magnetic Dipole (HMD)

The last point source to be considered is the HMD. As

with the VMD, the solution can be obtained by analogy with

e and _ interchange with thethe HED result. The roles of _o

result that
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8-5.

The last four subsections, completely cover most of the

use geophysical source models. While it has not been discussed

he_e, the addition of a stack of layers above the source can

be accomplished in a similar manner to the above derivations.

For earth bound applications this can be used to describe

ionospheric effects.

9. I and 2 Layer Earth Reflection Coefficients

For the preliminary analysis of the SEP problem, the

response of a half-space and of a 2-1ayer earth are discussed

in detail since these special cases contain all the particular

features of a general N layer system. The reflection

coefficient for a 2-1ayer earth are obtained from the continued

fraction expansion of section 7. The physical interpretation

of the mathematical form of the reflection coefficients are

discussed.

The 2-1ayer earth is sketched below. The stack TE

reflection coefficient is

Ab 8o

f

AZ
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The transmission matrix for the Z = d interface is

Ro, I

and

The Z I d 2 - -tl transmission matrix becomes

[ ] ¢' JL. e R,Le

/ut,'+' - ,:i "r"' _ (_-+)
'+ +,.-*'e'_c+'++')_ _ jcr,-,,_,L

.J

Now since A2/B 2 = 0,

__ _. r,_ _ (_._)13,

and

_.,.,.= _, + __c"'_.- ,/,:,,.') (,_.,.)
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The TM reflection coefficient for the earth2-layer

is obtained in a similar manner and is identical to (9-6)

with the TE superscripts replaced by TM.

The m_dt important Dart of 9-6 is the denominator of

the second term. Taking

The multiple reflection back and forth between d = 0 and

d - -tl in region 1 appear by expanding

-

An a geometric series. Each term of the series represents

an additional reflection at the two boundaries with
I

appropriate reflection a_tude change plum a "phase" change

2_ I t u corresponding to the two way path throuqh the layer 1

as sketched below.

I_o_-e: R,.:- R.,
R ,.... R,. .

RtL

The half space _eflection coefficient can be obtained

in three manners, An the limits as R12 * 0 (i.e. _1 _ _2'

¢1 _ ¢2 ) tI * - and t I * 0.

case .I: When R12 - 0

_r
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I as expected.

Case 2" When tI _ _, any infinitesimal loss in region i will

cause

_V,t,e -, o 6,-_ -_ <_-,o>

and

Case 3: In the limit as tI _ O, one obtains a half space *.ith

material properties c2, u2.

TI "I"_

R're W,, _ _,.,.
?t _t

Using the fact that _ _i- _ y__ - .....
one can show that

Note :

I+ II.,i W_

iiii i i i

In the above the emphasis has been placed on the TE reflection

coefficient only as far as it illustrates the nature of the stack

f
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reflection coefficient. All the analysis also holds for the

TM reflection coefficients.

One other important feature of the 2-1ayer reflection

coefficient is the resonant wave numbers for the waveguide

formed by the slab placed between two media of differing

properties. In most instances, the guide is leaky. These

resonances occur when

which is the general form of the normal mode equation.

Solution of 9-15 plays an important role in the analysis of

the 2-1ayer earth response. This will be discussed in detail

later.

10 - Normalization and Tabulation of HED Fields for SEP Application

In this section, the formal mathematical solution for the

HED derived in section 8 is rewritten in a normalized fo_at

which facilitates computation aspects of the evaluation of

the fields numerically. Since the primary source of interest

for the SEP application is the HED, it is used as the

example in the following sections. %no other dipole sources

can be treated in exactly the same manner so there is no

real _$. of generality.

In the MV_ system of units, the electric and magnetic

fields have units of volt/m, and amp/m.; the spatial

dimensions are in m. and wavenumbers in m "I. For computation

1975008236-041



Table i0-i

,f

I Normalized Field and Parameter Definitions

k-X_/

_o
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Table 10-2

Normalized HED TE Field Components

L
I
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Table 10-3

I Normalized HED TM Field Comon__9__q_



Table 10-4

Normalized HED Radiation Fields

#

1975008236-045



-38-

1 purposes it is convenient if all these quantities are

normalized in such a manner as to make them dimensionless.

Examination of the HED electric and magnetic Hertz potentials

of section 8 yields a convenient set of factors for

J
normalizing the E and }_ fields. The wavenumbers are

normalized w.r.t, the freespace wavenumber and spatial

dimensions are normali2ed w.r.t, to the freespace wavelength.

A summary of the normalization procedure is given

in Table i0-I. Combining the definitions of Table i0-I

with expressions for the fields in Table 8-1 and the forms

of the electric and magnetic Hertz potentials 8-17 and

8-18, one obtains the normalized expressions for the TE and

TM fields given in Table 10-2 and 10-3. For analysis of

fields at large distances from the source, the fields take

a simpler form since only the radiation fields have to be

considered. The radiation fields are summarized in Table 10-4.

ii - Radiation Patterns of a HED on the Surface of a

Half-Space

ll-l. Basic Formalism for Radiation Fields

One of the more important aspects of SEP method is the

manner in which the presence of a nearby halfspace modifies

the energy radiated by the dipole. In this section, a

general discussion of radiated power ks followed and it is

1975008236-046



-39-

applied to the particular case of a HED on a loss-free

halfspace.

In the discussion of _3

energy radiation and radiation

patterns,it is most convenient / !i

P

r i

tO adopt a spherical polar e I

coordinate system as sketched _ , _z

,
to the right. For any finite . _ IIp

size source, the fields at - --l_

large distances from the source !
Xi

are the radiation fields and

the fields are of the form

All higher order terms in I/r become negligible as far as

radiated power is concerned where r�=.

For the layered e2£th problem at hand, it was discussed

in section 6, that the fields can be split into two independent

types namely the TE and TM fields. This convention is

continued here in order to facilitate later analysis. At

very large distances one has the fields
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E e and H_ as well as E_ and H_ are simply related by Maxwell's

equations

^ _

It should be noted that to remain consistent with the concept

of radiation fields, higher order terms in i/r must be

neglected. Hence in all operations of the form 11-6, the

operator acts only on e _kr term in the field as written

in 11-7.

Further
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Once again only I/r terms may be retained for the radiation

field analysis and it is permissible to write

although this is not mathematically correct. In a similar

manner

6,-,o_
, I

Z -_ j Ke_ "h_

With these basic formalities settled one has

Ol-,,)

_is identified as the intrinsic admittance of the medium

in which the waves are propagating and is denoted by _. The

intrinsic impedance is given by

X -_ Y-L _._ (li-,2)

In free space Z = 120R chms. Thus Ii-ii gives

14ti - " YE_ tli-,'_)

In a similar manner, _;nalysis of TM fields yields

= ____
C,,-,4)

I
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I
and

11-2. Poyntin_ Theorem

For a general distribution of electric and magnetic

currents, Poynting theorerL_ summarizes the energy balance

of the electromagnetic system. For continuity, the general

form of Poynting's theorem will be reviewed. The power

supplied by the source is given by

_.-///(_,'._ - _'._).,,,-fir(_:._-,_:-_),,,,_,,-,,.}
VoD v

where V is the volume containing the electric and magnetic

current systems 5s and _s.

Now from Ampere's law

and Faraday's law

Using the vector identity

6. C__W - _"_*_ "_'_x_ (.-,_

one obtains

I
I
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Now

au-ad

0,-_0

Thus one obtains

v.

and

e - I._1(-,.,r.'E-E _'+ ,..,.,.,'_'_") .Iv
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It is not difficult to show that if tan 6e and tan 6m are

not identically zero, the surface integrals over the infinite

sphere will vanish identically since the fields will be of

the form

(i'

for large r and go to zero exponentially with r * ®. Thus

for a finite loss in the media

V_

For loss°free media

One minor point to note is the rational for retention

of one field of the order 1/r in the radiation analysis.

This is readily obtained by examination of the real power

dissipated in a loss free medium. It has the form

• k
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If IE I _ 1/rn and IB! _ 1/rm, on the infinLte sphere so

Real P = I'_I"- j_ _ _ J.e.l_, 0'- ,z-)

Thus n and m equal 1 and higher order values yield no

z'adiated power. Higher powers of n and m describe the

energy stored in the reactive inductive and capacitive

fields.

11-3. TE and TM Radiated Power

The energy radiated in TE and TM fields is now

formulated in terms of the field components which are

transverse into the planar surfaces of the system. The

radiated TE power takes the form

$.-

• T [W z

The TM radiated power is expressed in the same manner and

takes the form

eTM SjJj=- _ 1H_.Ce,u)["- a_,,, e J e ,4_0 ( I,- le)

11-4. TE .and T_ Pow.er Radiated in A. Wh.ole-$pace .by a H.ED

The power radiated by a HED i8 readily expressed by

l
i

I
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combining the results of 11-3 and section 10. The E

TE electric field has the form

Thus

-_

The true power in _,atts must be obtained by multiplyinq

the above pTE for the normalized fields by the scalinq

factors for the E and H fields of Table I0-I. For the

following discussions, only the relative power is of interest.

The TM power is determined from the H_ TM field

(,1-2t)

1%

: and therefore

• \
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I The TM power is then expressed by

pr_. "Z 6 +,

As for the TE power, the true power 11-40 is obtained

by multiplication by the normalizing factor for the fields.

The true total power radiated by the HED is then

rr_ _,_,._'_,_,,_ . _ P'" c,_¢_k.+. (,,-+,)p

The addition f/_z factors appear since the normalized

fields are given as I/R while the integrals 11-33 and 11-34

are cased on the use of I/r hence a difference of Y@o z

in the magnitude. Regrouping 11-41 yields

where Ke = e/co and Km = _/_o.

Ii-5 Radiation Pattersn for a HED on the Surface of a

Half-Space

The radiation patterns for a HED on the surface of a

halfspace are obtained from HTM and ETM by finding the

angular dependence of the i/r term fields. The

general picture is sketched at _,,,,_

O
the right. The radiation pattern _ - _ .
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in region o will be derived. The pattern in region 1 is

obtained by the fact the solution is the same as for

region o with material properties interchanged £o _ e,

£, etc.

From Table 10-4

The exact analytical evaluation of these Hankel transforms

is not possible. For the analysis of the radiation patterns,

however, an exact form for the integral can be obtained by

obtaining an asymptotic expansion for the fields. This

requires that P and Z be large. This is a compatible

condition since analysis of radiation patterns and power

radiated is carried out at "infinite" distances from the

source.

The first step in reducing 11-43 and -44 is to note

that

Next the integral from 0 to = is transformed into an

integral from - - to -. This can be done for all order Hankel

transforms with the aid of the identities in Table ii-I. Thus

; %
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_,C_

1 ' (z_.e),,l._ (It-.@
-o.._

}

To this point, no approximations have been made. !

At this point the contour of integration will be changed

and the asymptotic form of the Hankel function introduced.

Thus
i

: _--!_ _ T,:_" e Jz_ _,,-_)
Ex_ination of 11-50 and -51 are in the fo_ which admits

evaluation in te_s of an asymptotic series by the saddle

point method. The contour C is the saddle point contour in

the complex_. In changing the integration path from along

the real axis to C, the effect of any singularities lying

between the real axis and C must be considered. Fortunately,

the integrands in 11-49 and -50 have only branch point

singularities but no poles. The effect of the branch point

singularities is the generation of second order effects.

These effects will be discussed later. For radiation patterns,

the branch points may be safely ignored. The rational for

this will be seen in a moment.

\
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The exponential in the integrand

_o_ �X�e 6,I-_') "

and the definition of the saddle point and saddle point

contour are dealt with in detail in ADpendix I. Transforming

from the _ plane to the _ plane 11-49 and -50 take the form

--AJO -_

where

/_Vz(_ _
_--,r__ j. -r-J,_(,..)d_ (,,-_4}

and ?' (_ J---_

Now in the vicinity of _f, the saddle point of the exponent,

where C _ 1/R. In the limit as R �_,/_ ˆÄ�,Since

the integrands of 11-52 and -53 are exponential integrals,

an asymptotic series can be developed by expanding F 1 and

F 2 in Taylor series. For present purposes, only the o order

term of the series will be retained and
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and _ _I(&4)_41 _ - _

If higher order terms in the asymptotic expansion of

F1 were required then terms of d2nF in the Taylor seriesm

d_ 2n

would be required. It is not difficult to show that terms

of d2nF will contain factors of C 2n since

du2n

d a" -- C _ _z6

since d_A-- _--O . In the limit as R all these

relations become exact and the asymptotic series is in

powers (I/R)n. At the branch points of F, the function

derivation become singular. Since this only affects terms

in _ and_of higher order than I/R, the branch point

effects may be safely ignored in radiation pattern analysis.

Putting all the pieces together one obtains

Th_s the radiation pattern is just that of the whole-space
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modified by a Fresnal transmission coefficient. The

radiation patterns for a dielectric half-space with

dielectric constant Ke take the form

Z >0

---"-" _K v_1!
-_J /

I_,(,,,11"-_"_,(2rc,-t.)_-.,CC

Z < 0

The resulting radiation patterns are plotted in Fig. ii-i,

through 12 for various values of dielectric constant for the

half space.

The particular feature to note is the strong directionality

of the TE pattern into the earth. This peak in the patter_.

occurs in the direction of the critical angle of the air-earth

interface.

The TM pattern exhibits a null in the O_ direction but shows

I
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Table ii- 1

Useful Bessel & Hankel Function Identities & Properties

P,_(e)

c_(_) "- C,,-,C;O- _- c,,ce)

Asymptotic Forms

I
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i a lobe of increasing strength at angles of O > o_

for increasing Ke-

22. Surface Fields about a HED on the Surface of a Half-space

In the previous section the radiation patterns for the

HED on the surface of a half-space were developed. Examination

of the pattern in the plane of the interface shows that

both the TE and TM patterns have a null in this direction.
be

The fields in this direction musu*of second order at large

distances from the source.

In the SEP experiments, the fields about a HED are

measured on the earth or lunar surface. It is therefore

.'_ .j, • _

instructive and useful to,expressions for the fields

near the interface. For these applications distances of

1 to 20 wavelengths from the source are most interesting

and use asymptotic expansions to estimate the second order

fields is feasible. The general nature of the fields is

discussed by Annan (1973) and is sketched in Figure 12-1.

Near the interface the fields are composed of two parts, one

which propagates outward with the phase velocity of the air

and one which has the phase velocity of the earth.

In this section the asymptotic expressions for these

second order fields are developed for the case of a half-

space with free space magnetic properties, but arbitrary
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dielectric constant and loss tangent. The expansions

are obtained by analysis of the limiting case of the

saddlepoint expansion of the last section in the limit

as Z/P _ o. This limiting case of the saddlepoint curve

is sketched in Fig. 12-2 and is essent_ally two integrals

about the branchlines from the branch points at the right

of the imaginary_i axis. The branch point at /_ = 1 and

the saddlepoint merge as Z/P _ o.

As an example of how the solutions are developed,

the TE H z component will be analysed in detail. The other

solutions are dev_loped in like manner and the results will

be tabulated. For the development Z will be taken to be

finite, but such that (Z)/P <<< I. The H field is then
Z

expressed as

Regrouping the integrand and deforming the contour of

integration to that of the limiting steepest descent form,

12-1 becomes

?r,
where
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L

I FR_ the value of the integrand at the right of
where is

the branch line and Ft i is the value it takes at the left

of the branch line. Defining

the first integral of 12-2 becomes

Similarly letting

the second term of 12-2 has the form

The basic wave nature of the two branch-cut integrals is

now apparent. It only remains to evaluate the wave amplitudes.

The steepest descent tec,hnique is now applied to obtain the

-!
asymptotic series expansion of the integrals in p and the

first non-zero term in the expansions yieldsAamplitude, ,

required here. Higher order terms may be retained; however,

their contributions are not significant for SEP applications.

To obtain the asymptotic expansion, P is nssumed >> 1
a

and non-exponent part of the integrand is expanded in,Taylor

/
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series about _ and 8 _ 0. In the vicinity of the

branch points, F 1 and F 2 take the form

where the function g is expanded into a Taylor series

about p = o. Thus the integrals in 12-2 take the form

_ -t4

where T (x) is the camma f_ction. For the present purposes

only the first non-vanishing te_ is retained in order to

obtain the second order fields. In order to obtain the

_plitudes of gn(o), it is necessary to examine the

behaviour Fo and F1 near_= 1 and_ = ,JKI respectively.

The + superscripts denote the ( left \)
side value of the

- right

radical near branch line

(I_-11)

Since

1975008236-078



-57-

12-10 becomes

F,,--. "4j z_. _ J_7"i _ <,.,. ,.,)"p___o"
and the first term of 12-8 is obtained by noting that

Ir

with result P

and C = 1/2 _ (K'-'> C(a-'_'_

Similarly about _ I=JKI2 F1 becomes

(_?__,,) n, "-)

which yields - (_l- I)''%

_,_ (.,_,-,) (.'""_) 7
p....

and C - 1/2 Since T'(3/2) = 'J_• _[ , the resulting expression

for the H field becomes

C_,-,)P;- - _'_ r,_.,,>

The approximate forms for the HED on a half-space second

order fields are listed in Table 12-1. Before leaving this
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section it is important to note some mathematical

and intrinsic physical points in the development of the

TM response. The applicability of the TM expressions °

in Table 12-1 is highly dependent on K, not being

extremely large.

While the difficulties cannot be dealt with in

detail here, the basic mathematical problem stems from

the Taylor series expansion 12-8. For the TM reflection

coefficient, a pole located on _he lo_er Rieman surface

of the reflection coefficient approaches L_= 1 as KI _ _.

This limits the radius of convergence of the 12-8 Taylor

series. This pole may be handled by application of the

modified saddle point or steepest descent method (van der

Waerden (1950)) in which the effect of the pole is

subtracted from the integrand and evaluated separately

wh£1e the remaining portion of the integrand is evaluated

as above. For K, in the range of SEP applications

(I < K| _ 15). There is no need to go through this extra

step. The role of this pole and its effect on evaluation

the integrals has been a source of controversy since

Sommerfeld's original discussion of the problem in (1909).

A good discussion of this problem is given by Banos (1266).

t \
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Asymptoti c Form of Second Order Fields about a FIED on the

Surface of a IIalf-space
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13 HED on the Surface of a 2-Layer Earth

13-I Introduction
J

One of the first objectives of the SEP experiment was

the detection and delineation of a planar reflector

buried at depth in a low-loss dielectric eazth. The fields

at the surface of the earth should be those 9enerated

by energy transmitted parallel to

o T,

theearth'ssurfacepluse.ergy
reflected from the underlying

interface. As it turns out,

the reflected _ignal, in many

_nstances, is stronger than

the direct one. For some

field componentr, the

reflected signals are weak and the direct signal dominates.

There _r, _wo techniques for obtaining mathematically

useful ex[_,c_lens for the fields ir the vicinity of the

re['on o-region i interface. The one technique is known as

the geometrical optics solution while the other is the

normal mode solution. The two solutions for the fields in

region of (Z)_ o will be developed here. The two techniques

are based on the properties of the 2-1ayer earth reflection

coefficient discussed in section 9. In particular, the two

types of solutlons are contingent on the applicability of

Dp
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i equation 9-8, the geometrical series expansion of the

denominator of the reflection coefficient. The effect of

magnetic properties will not be considered here and the

permeability of each region is taken to be the freespace

vaIue.

13-2 Geometrical Optics Solution

Examination of the HED radiation fields in Table 10-4

shows all the TE fields contain the factor (H - o)

while the TM fields contain the factor

Upon subs-itution of the 2-1ayer earth TE refluction

coefficient given by equation 9-6 and the equivalent TM

coefficient, equations 13-1 and 2 become

,,0)

T,?(t-,,?

where 8 = e j2Tltl is the phase shift (and attenuation) for

a 2 way pass through region i. If the interfaces are poor

reflectors and region 1 has a finite loss then the terms

q_. _TM TM
Ri_ RT[2 8 and _10 RI2 8 have ,-mplitudes less than unity.

When this condition is satisfied 13-3 and -4 can be written

I
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with the aid of 9-8 as

�T°,,_ a < ) Cl_-_-)

The nth term in the series represents a wave which has

made (n+l) 2 way passes through region 1 before being

detected at the receiver. For example, a TE wave for

n = C and n = 1 is sketched below

_ t

"'\ A I

The final step in the geometrical optics analysis is

the evaluation of the Hankel transform integral. The solution

is obtained by saddle-point contour integration on each term

of the above series and retention of the first order term.

The half-space solution which is the term independent of the
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series in 17-5 and -6 is obtained by retention of the

second order terms. The field expressions are those

developed in section 12 and given in Table 12-1. As an

example, the H TE field will be derived here.z

where H z (H.S.) indicates the half-space solution and

8)

is the nth multiple reflection in the layer.

The individual terms Hn are evaluated as follows.
z

The Bessel function is replaced by the appropriate Hankel

function (see section II) and the asymptotic form of the

Hankel function is inserted into 13-10. The integrand

then contains an exponential form

which is identical in form tc that of the integrals discussed

in section II and the saddlepoint contour developed in

ap ?endix i.

Defining R = (p2 + 4(n+l)2tl 2) 1/2, the saddle point

of the exponent in 13-14 occurs at
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I where K is the complex dielectric constant of region I.
Thus

C

The Fn(O) is given by setting/_=_\p in remaining portion

of the integrand of 13-16

n is given byH z

(_ co._)_*'_
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Hn appears as if generated by a spherical wave radiated
Z

from a source at a depth

which has the radiation pattern of the half-space interface

modified by the angular dependence of the nth and n+l th

power of P_-) and _, the interface Fresnel coefficients

at the geometrical angle between the receiver and the n

image source. This is sketched in Fig. i_-i.

The evaluation of each image contribution by the

saddle point method invokes the usual assumptions that R

is large and the RI0 R01 _ product is considerably less than

unity. The series 13-4 is rapidly convergent in this case.

As in the radiation pattern development, second order effects

which are additio_lhead and unhomogeneousAtied to the inter-

faces are ignored. When the geometric optics expansions are

reasonably valid, neglect of these and higher order terms can

be made with reasonable justification. The most important

second order terms are retained in H z (H.S.).

When RIoRI28 approaches unity, as it does for loss

free media whenAexceeds the critical horizontal wave

numbers for the two interfaces, the above expansion falls

apart. In a geometrical _e_i_ this occurs when
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or

P

for a large number of n.

The geometrical optics series terms for each of the

TE and TM fields generated by the HED are summarizec" in

Table 13-1. The expressions given are for the amplitude

of the nth multiple. Thus, the total field at a height h

(small w.r.t. P_t I, etc.) is given by

with An(in) being the quantity listed in Table 13-1.
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Table 13-1

n th Term of the Geometrical Optics Series for Fields a.bout

a HED

TE

Co --_.-. ,% A__m__

h n4, I

The Fresnel coefficients have the argument _n as defined by

13- _-

¢.
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13-3 Normal Mode Solution

The geometrical optics solution discussed in the

last section required three major assumptions. First,

the expansions 13 -= and 13-6 must be valid; second,

the evaluation of the integral for each term in the

series was obtained by retaining only the first term

of an asymptotic expansion; third, second order waves

were totally neglected in all but the half-space

portion of the solu:ion. While many situations

warrant these approximations, some of the most

interesting geological environments may not meet

criteria for this type of solution.

An alternate fo_n of solution is the normal

mode solution; this solution complements the

geometrical optics solution since it is most useful

in problems where the geometrical optics solution

fails. The normal mode solution is applied primarily

in situations where the layer thickness is small,

usually on the order of the medium wavelength or

less, the interfaces are highly reflective and the

layer is almost loss-free. The normal mode solution

can be applied in situations where the geometrical

optics solution is adequate but computational efficiency

is usually quite a bi_ less when the solution is

applied.
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The basis for the normal mode solution lies in

manipulation of the contour of integration in the

_l_.
complex]_ Analysis of each term in the geometrical

optics solutions and the associated saddle point

contour shows that the limiting contour for P/Z >> 1

is as sketched in Fig. 13-2. This limiting case

P/Z is defined as the normal mode integration

contour. The original contour along the real/_ awls

is defo_ned to this contour. In the process of

performing this deformation, Ii singularities of

the integrand must be accounted for. The singularities

of the integrand are just the poles associated with

the zeros

(TE or TM superscripts implied). As an example of

how the procedure goes, the Hz TE field will be used

as an example

First

The second line is the form_the integrand after

taking the integration path along the real A path

from -= to +® and moving it to the limiting P/Z _

case shown in Fig. 13-2. The residue sum takes into
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account the poles of the integrands crossed in

deforming the contour and integrals are contours

around the branch cuts associated with radicals

(Ki __ 2)1/2 Thus _i implies

*' STi' .;-

where FR and FL denote the values F takes on the

right and left side of the branch cut. The other _i

contours have the same form "as !3-22.

_od_

13-3 (i) Normal^Wavenumbe_/_n

At this point it is informative to examine the

singularities of the integrand. Inspection shows that

the only singularities besides the branch-points are

the poles associated with the solution of 13-20. The

nature of the solution of 13-20 is most easily u:_::°-

stood by considering special cases first and t_

working toward more complicated situations. The

simplest of all models is the one used in electrice [

engineering waveguide analysis. Here R10 = RI2 = + ]

(i.e. the walls; regions 0 and 2)are perfect reflectors

(i.e. perfect conductors) and region I is loss free.

l
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Then 13-20 becomes

Taking the log of 13-23 yields

z_ d

and

K, A'_ - I g2 "")_/-_,5' (,_.2,)

and

- aE_ d

or

The solutlons_n of 13-23 lie in the complex /_ plane

se

as s;,etched below l_

t jr

j * 3 I _ 2 ' 4_,
...... : • _A

I:
For 12n+----!1)_or ____nn< _rKI, the root /i n lies on the

£t I t 1

real _ axis while for values greater than $K'1 the roots

lie on the imaginary axis. If one returns to the plane

wave spectrum notation, it is readily seen that the real
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_ corresponds to waves propagating in the radial

direction whereas the poles in the i_aginary axis are

evanescent waves decaying exponentially with the

radial distance. There are a doubly infinite set of

solutions 1_n and In addition, there is a second set

of roots on the other Riemann surface of the radial rI.

The next step in the discussion is to consider

the situation when region I has a finite loss. The

solution for _n is identical to 13-26 and -27 with

K1 complex. The solutions /_ n are shown below

q

Ie _

k3
!

4*

The poles now lie on the dotted line which is the path

in the complex plane where _m rI _ 0. It is r_adily

seen that the no-loss case is the limiting case of the

one above with two non-intersectin_ branche_. It _s

also apparent that there is no clear distinction

between propagating and evanescent wave_. The wav?s

which formerly were unattenuated with radial distance

have a small attenuation while uhose exponentlally

decayed with radial distance. When the loss is small,

the dotted line lies close to the real axis an_ bendJ

1975008236-096



-71-

abruptly upwards near the imaginary axis so that the
, r

evanescent and propagating terminolgy can still be

applied.

The preceding example is of little interest to

SEP applications, but it does show the basic effects

of f_nite-loss and layer thickness tI. As tI increases

theban become more closely spaced and more and more ' _

move into the propagating regime. _

Two last examples of the behaviour of the _i n _

solutions provide insight into the general case _o be

considered in a moment. First, the case of RI0 = C a

constant. If ICI < i, the upper boundary is leaky and

some energy leaks out of the layer with every reflection

at the boundary. If ICI > i, the upper boundary is

active or the region 0 is resonant in some way or

another. In the following sketches, the I! n for the

finit_ loss case are shown in the positions they would

assumeif ICl > i, 1C1 < 1 for _ = 0 and finally ICl = 1

I¢1> ,o,, I
o

: O

!

_ C
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o.

Icl < 1 _ = o I
a,

\ •
O_ •

Icl = I _ ,_o _

The interpretation of the behaviour is simple. For

ICI > I, the radial F1 must have an imaginary component

such that

Hence 8 > 0 if Icl> 0 and An is moved left and

downwards from the dotted line along which 8 _ 0. If

ICI 5 1 but C has an arbitrary phase, the/_n slide up

or down the line 8 _ 0 to yield the appropriate phase

shift.

The preceding examples provide the insight as to

how a real model might behave. The simplest geophysical

model is the case retaining RI2 _ -1 but taking R10 as

the boundary between two loss-free media Thus
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As a demonstration, the TE case will be discussed in

detail. The TE reflection coefficient has the form

_tO "" " _ ('17- _JI")

/

and examination of the behaviour of R]0 along the real

/_axis shows that _RI01 varies as shown below

I_l=l -

!

,K. I

The wavenumber I% = _0 corresponds to a ray incident at

at the 1-O boundary at the critical angle; beyond the

critical angle out to _ = _I ' the maximum allowable

horizontal waven_er the region 1 will permit to be

non-evanescent, the reflection coefficient has an amplitude

of unity. The phase of RI0 swings form 0 to "l_ as 2% runs from

-i

t
%
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or _<JK , the reflection coefficient is less than ] and

C---"

has a phase of 0. The solution of 13-_D will yield the

positions of_An to be sketched below.

7_ b7

_ ,3-9

The positions of the]In can be synthesized by combining

-6 and -7. For _M< JK%, IRI0 I < 1 and_nFig. 13-3,

must be located up and to the right of the line Im F1 = 0.

0%-° =-Forthe region < A < v K I, the _'Ln lie on

" the real axis but shifted along due to the finite

phase of RI0. In the above example,_n,n = 1 and

2 correspond to true guided waves while._n n =

3 to _ are leaky modes of the layer. These leaky

modes decay exponential with radial (horizontal)

distance due to finite leakage of energy upwards

into region 0. If region 1 is made lossy, the

behaviour is similar to that sketched in Fig.

13-4.

The solution of 13-30 has the corresponding

set of_n solutions not shown in Fig. 13-9. In

addition each Riemann sheet of which there are

now four has its own set of solutions. Thus

there are four doubly infinite sets of solutions /t,

The last case to be considered is the one where

regions 0 and 2 are both dielectric media. Then one

must consider the effect of RI2 which has the form
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Along the real axis one has IRI21 and 1RI0 I being Qaz
&Me

of_two forms as shown below

1.8 - _ __ --

o

' % ,

CuJq II, %
W6 ( W_ 4 _

t

t

t
9' J

6

d o

For case i, the product }R10 RI21 < 1 except at

_i=_l while for case 2 the product IRI0 RI21 = 1 for
u--

K 2 </_<4_ 1. The two cases yield the schematic Dole

positions shown below

lq7 nAegqA_
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e

D
r

For case i, no truly guided mode can exist_ All

._ n are complex since there is noel for which IRI0 RI2 1

= i. Energy is continually leaking into the upper and/or

lower halfspace.

For case 2, however, it is possible to generate

unattenuated guided waves since IRI0 RI2 I = 2 for an L

interval of _. In this case _o and J_2 <6< _K 1 and

/Icorresponds to rays incident at angles greater than

the critical angle for the two interfaces. The slab

then becomes a dielectric wave guide if the thickness

is sufficiently great to move some of thegn into

this interval of the real axis. For finite loss in

the media, the _n are pushed up from the real II axis.

In #his problem, the branch cuts generate an 8 sheeted

Riemann surface each with its own set of [\ n.

13-3 (ii) Normal Mode Amplitu@9

In the preceding analysis, the normal mode wave-

numbers were discussed in relation to the physical

parameters of the problem. Returning to equation

13-21, the residue series becomes a sum over the

normal mode wavenumbers_n. Each_n corresponds to a

!

I
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_ simple pole in the integrand. The amplitude of

i the residue at each pole then yields the excitation

amplitude of the mode for the given source and layer

geometry.

The amplitude of a mode is obtained as follows

where Hz is used to demonstrate the procedure. •

The integrand of Hz has the form

a_o -
(L- f,_c

In the vicinity of 21 n,

'Tt a 're ._t _!
_'+' _," _ _ _ _ F_ (_'0_'"_-i (_-_" (_3-,_)

The residue at the pole_ n is obtained by multiplying

13-35 by (_A_-/in) and taking the limit as_l_./In. Thus

where A_ is the normal mode amplitude of excitation

l
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1 shows that the
I factor. The asymptotic form of H1

mode behaves as

Thus all modes have a characteristic distance

P. in which they exponentially decay beyond detection

unless they have Im._ _ _ O. In the case Im _i. _ O,

The H_ field may then be expressed as

Examination of2_ shows that_i _ j- as n _ -.

Therefore, in any practical situation where P is

finite, the series sum can be truncated without loss

of accuracy. Thus

where M is primarily determined by the geometry.

In addition to the attenuation truncation of the

series, there is another factor which must be considered

as tI + 0. The number of/i, on the upper Riemann surface

used earlier actually becomes finite and M _ 0 as tI _ 0.

Pictorially theA w lie on lines determined by tI as

I
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sketched in Fig. 13-12. As to tI * 0, pole n = 1

moves up the contour and the contour wraps itself

onto one of the lower Riemann surfaces.

' _ • = o. coS"

• e_ p,[

. -'_ _ _-_

The position of pole 1 is schematically indicated on

the diagram. _ leL,.j_,.. 4.(_J_._..,L_ _,_ +¥_6! v6t_., _v- 1(_°3.

13-3(i) Branch Line Contributions=,

The final stage of the analysis by the normal mode

technique is the evaluation of the branch-line contributions.

The analysis will not be carried out in detail since it is

identical in form to that considered for the half-space

solutions in section 12. The integrals cannot be evaluated

exactly but asymptotic forms obtained by steepest descent

integration are quite often adequate.

The first thing to be noted is that the _1 integral

is identically 0. The asymmetry of the in_egrand about the
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I branch-cut faces the integral to vanish. The other

two integrals take the form

which are second order lateral and/or inhomogeneous

waves tied to the interfaces.

The above solutions for the normal mode and branch

line integrals are valid except for the case of IR12 I _ 1

and Im Ko = Im K 1 _ 0. In this case, certain critical

values of t I cause a pole to align itself with the

branch-point. At the same time a pole in the lower

Riemann surface also coalesces with}K o. The result

is a second order pole at the branch point. The

integral in this very special case can be analysed by

subtracting of the residue contribution which yields

a "guided" late{lot leaky wave which has the form

_ I_-_t

as D gets large. Since this situation rarely occurs

in real media, its role will not be dealt with in detail.

One other point which should be briefly mentioned
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is the pole associated with the Som_erfeld "surface" !

I wave. For a dielectric layer which is very thin over

a perfect reflector. This pole can appear on the

upper Riemann surface. As a result, the TM energy

will be channeled into a guided wave for smaller

values of t I than will TE energy. Since tie real

environments of interest are quite !ossy, the

details of this case are primarily of academic interest.

13-3 (iv) Summary

The preceding discussions demonstrate the

development of the normal mode solution. In table

13-2, the A M Do and D2 amplitudes for the various

field components listed in Table 10-4 are summarized.
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14 N-.L@yered Earth Response : The'_ast"Hankel Transform (FHT)

In the preceding sections, the analysis particular

earth models was carried out by the use of approximate

integration methods. While these results provide a

useful bas4s to start frcm, the need for a more _

generalized model to simulate the presence of several

subsurface interfaces oz to model at gradational change

in material properties becomes important when one must

attempt to interpret real data. The next simplest model

for SEP purposes is to consider N-plane layers. The

most interesting models which are virtually intractable

to analysis in a general way are models which exhibit

both vertical and lateral variations in material

properties.

The N-layered model is just an extension of the half-

space and 2-1ayer model. The spectral forms of the fields

are readily obtained and the main obstacle to determining

the field strengths as a function of spatial position is

the evaluation of the Hankel transform. While the

approximate methods ef earlier sections may be applied,

it becomes very difficult to handle the approximations

required at each step. As a result, a fast numerical

method of determining the Hankel transform directly on

a computer was sought. The result is a** algorithm which
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combines the Fast Fourier Transform (FFT) method and

I
a Gaussian quadrature based on Chebychev polynominals

to directly evaluate the Hankel transform. This

section is devoted to the mathematical niceties

required to reduce the infinite intecral to an

approximate form which facilitates evaluation with

the afore-mentioned numerical quadrature schemes.

The general Hankel transform pair are expressed by _ _

The expressions 14-i and -2 are identical in form, so

that the evaluation of one by some numerical method

assumes the evaluation of the inverse transform.

The first step in the analysis is to replace the

Bessel function by its integral representation.

_c_) ¢_" J_ _'_

NOW the transformation of integration variables

is applied to 14-3 with the result

I.Co)'- Cd)'"It __
-, (t-_')"" _'_-_')

L

{

I
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. . Noting now that the Chebychev polynomial of the first

I kind and of nth degree is given by

. "/

_ and defining

equation 14-5 becomes

which is readily identified as a Fourier integral transform.

The inverse transform integral associate with 14-6 is

therefore

&,¢4

c_-_')"'- ,,c_ -_-- ": _ (l_-,o)

With this development complete, 14-1 can now be

rewritten in a more useful form. First, 14-5 is used to

replace J_ (AE) in 14-1.

The integration roles are now interchanged with the result

i that

|

-,
!
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I Using the symmetry properties of the Bessel function

14-9 finally becomes

where

@C^)- A_C^) A> o

= (-0 I^%F:CtAI)>,<o

and -- F::Co) 4" C-0_F(O) A = o

The interior integral in 14-11 is readily identified

as a Fourier integral transform

and 14-11 becomes

FCr7=. (J')" '

At this stage, the transform has been reduced to the form

amenable for numerical analysis. The two integration steps
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14-14 and 14-15 essentially take the spectral function,

%_ it into its two dimensional equivalent and finally

do an azimuthal quadrature to obtain the three dimensional

response.

In the FHT algorithm, 14-14 is evaluated by the

FFT method. Under the assumption that,(A) can be

written or reformatted in a manner that

where 6_ N is a limit chosen such that G(2k) may be

assumed 0 for all 2% > I_ As an example of howN"

G can be taylored if it does not go to 0 as A_emis the

case where

Defining G_ L C_ - C (14-_2)

; In other words the limiting behaviour as h --_ o,

i' can be analysed and usually an exact evaluation of the

1 '
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behaviour at high wavenumber can be derived.With the

integration limit to a finite interval, the next step

"I,F is to digitize G(A) at equispaced intervals. Thus

the discrete form of G(A) is

Thus 14-17 becomes

If it is then decided to evaluate_(_) at a discrete

set of 2N points equalispaced at interval

71"_
Noting now that chosing _ _- _ one has

M_. -lu 4, I

which is the conventional form of an FFT with 2N points.

If one now redistributes G n and the subscript notation

by d_ fining

i OI_e finally obtains

: ! 3t=_
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The second integral is reduced to a numerical quadrature

by use of the general Gaussian quadrature method with

weighting function (i - u 2) -1/2. Without delving into

the details, the result (Abramowitz and Stegun (1965)) is

where

_. : "/M (,q =_,)

The only remaining problem is to bolt these two quadratures

together. The main difficulty is that_is available

only at discrete points _: m _ while it is required at

points xir. In order to complete the quadrature some

form of interpolation scheme is required to map from

_ --_ rx i .

If one uses linear interpo aation, one can write the

piece-wise continuous function

where

Combining all the pieces one has
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The basic assumptions built into this development are

summarized as follows :

i. Band limiting of G(_ ) to limits -_"N to '_JfJ
t

The tcN are determined by considering the

function _,

2. The next step is the digitization of G at

interval /_3 . The interval D must be chosen

in order that it will adequately resolve the

spectrum (_ .

3. With the spatial interval determined by z'_

and N, an interpolation routine must be set up

to generate _at any arbitrary value of the

argument.

4. The second quadrature requires picking of the

sampling density of the quadrature. This step is

determined by the M for the Chebychev quadrature.

The sampling occurs at the roots of the Chebychev

polynomial of degree M.

With the above algorithm it is a strictly

computational problem for determining the approximate

field strengths over an N-layered earth for any spatial

/
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I position. There are practical limitations, however,

sirce letting, M, N become large which is occasionally

required by some awkward models makes the computational

expensive far too high for routine operation.

Section 15 Summary

The development of all relevant mathematical

forms required for the SEP plane-layered model is
|

complete at this point. The application of the |

theoretical development appears in various papers and

SEP documentation. It is hoped that a record report

similar to this which would present the numerical

tricks and program listings as well as sample computations

which parallel the theory presented here will be completed

in the future.

The preceding book contains most of the relevant

mathematical tricks for analysis of geophysical

electromagnetic problems. The asymptotic expansion

methods and the FHT quadrature method are more amenable

to conductive earth problems since all spectral

singularities are smoothed out and the numerical

computations are easier.

I
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Appendix 1

Numerical Evaluation of Saddle Point Contour

The saddle point method of evaluating some of the Hankel

and Fourier transform integrals is exploited to varying

degrees in the body of this work. In this appendix, a

brief summary of the numerical determination of the saddle

point contour is considered.

The saddle point is defined by examining the kernel

function

e A-_

In the case at hand, f(k) has the form

The objective of the saddle point method is to find

where f has a saddle point and thence to deform the

integration contour into a contour of steepest descent

through the saddle point.

The saddle point of f in the above discussion occurs

at the point where

a_

with the result that

_ _ _ _-_

[
The physical interpretation of this result should be obvious_

r

i
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_ the maximum result a given spatial position will be

received from those elements of the way-number spectrum

which propagate in that spatial direction. Hence the

saddle point can be determined directly from the geometry.

With the saddle point defined, the next step is the

definition of the steepest descent contour. Along this

contour

_^_= _c_)- _ _-7

where U is a real variable which is identically 0 at

A = lp. The problem now is to define a contour in the

complex A plane such that f has the functional form _7)

Since the path in the A plane corresponds to the real axis

of the complex _ plane, one is attempting to find the

mapping of the real _ axis in the complex A plane.

In the vicinity of the saddle point, it is not difficult

to ascertain the contour behaviour. Defining

Then

_ _ _c_,) �__b_ _-_

Comparing (9) with (7) yields

Since
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Pictorially one has _'_ • ... t,,/.] .

the contours of flAl-flXp)

sketched at the right.

The steepest descent path _ _

,passes through the saddle

point as shown. 2 I -l-_-_

If k is real, the -- C,,_.w,,e_ _(_)" c_l,.

saddle point lies on the real .... ¢o_46w,, Q_ l_,c_s_.

x axis and the steepest descent

contour passes through the

saddle point at a 135 ° and -45 ° angle. _aW_ A_

C_S¢ e_ _ _|.

For some numerical computations,

the exact position of the steepest descent contour is important.

The remainder of this section is related to determining the

exact position of the steepest descent contour numerically.

The most useful starting point in analysing the behaviour

of the steepest descent path is to look at its asymptotic
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I limits since the behaviour near the saddle point is well

defined. This is done Ey taking

where A)_k, kR etc. (similarly for U}. In this instance

_C^_ =_ (_ _ -_ -_* _-,_

Now

J
(" "" _i _ P,-,I,"

thus

+ ?-.J _.,,.

Since _ is real and negative the limiting angle _ must

be such that

Breaking the brackete_ part of _)into real and imaginary

components and taking the ��à#˜�•�factoryields

Now, by ,

and

t
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I If the -_/2 factor is chosen (2e) _(,uld become

an_ _24) would become
#

The sign chc_ce degends c: t_ partlcular choice of the

branch cuts for th_ radical (kz- A2) 1/2. Examples of the form

of the saddle point contou1" are shown in Fig. 1.

The asymptotic limits are defined by

_o

A FORTRAN program was written to map the saddle point

contour in the complex _ plane as a function of the

parameters _, Z, and tan 6 (k2 = (1 + j tan 6).

The numeric._1 procedure is a 2 step process. For a

given value of U, an estimate of the corresponding value

of A Is obtaln_d by using a weighted combination of the

small _ and asymptotic form for large _. The estimate

of _ is _e

where

/', + |"/al .a8

)
#
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I From the initial guess le, a Newton iterative scheme

is used to zero in on the correct value of A. On the

saddle point contour

For Ae one has

where e is the error from the fact that Ae is not the

correct value of A. On the assumption that Ac is

reasonably close to the correct value A t , one expands f

about Ae in a Taylor series. (f assumed analytic; in this

example f is not analytic at the branch cut So a few minor

computational tricks have to be used)

The next estimate of A t is obtained by setting

and solving for & yields

¢

where _ -- -_' _. [_'*-_'%>"% A-$3

i 9"
; In the limit as f"/f' * O, |$ becomes

, ¬5]975008236-]24
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_ Near the saddle point, the expression for,_ given in 1

equation 40 is used since f' _ 0 at _p. The choice of

sign for the radical in 40 is the one which makes the

I&l smallest. Far from the saddle point 41 can be used

since f"/f' becomes small as IA_ �_.

k

r
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Appendix 2

Table of Useful Hankel Transforms

iI

f
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. . A ABSTRACT

I The Surface Electrical Properties (SEP) Experiment was

performed as part of the Apollo 17 Mission. This report

! describes measurements made with a scale-model simulation

of the experiment. Included is an extensive set of traverse

patterns taken with a dielectric fluid overlying metal and

, dielectric plates both with and without the addition of

various structures designed to simulate various features such

as crevasses, craters, and buried objects. Horizontal-

interface traverses are shown to generally agree with theo-

retical calculations. Various experimental techniques used

are discussed and an index to traverses recorded on magnetic

tape is given.

A
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1.0 INTRODUCTION

This is the final report dealing with modeling activities

carried out in support of the Apollo 17 Surface Electrical

Properties Experiment 1. The modeling activities consisted

of operation of a scale model of the SEP experiment, which

utilized a technique known as radi3-interferometry depth

sounding 2'3 to study the electrical properties of the upper

layers of the moon's surface. Figures 1-1 and 1-2 illustrate

the SEP experiment and the model respectively.

Previous reports 4'5 have discussed in detail the general

design and operation of the model and havc included detailed

work concerning antenna patterns and traverse patterns

(recordings of signal strength vs. transmitter-receiver

separation) taken without a dielectric medium present. In

... addition, the last report contained a preliminary set of

curves taken using dielectric fluid and the metal plate.

The purpose of this final report is to exhibit the

extensive set of traverse patterns which the model was

designed to produce. Section 2.1 describes traverses made

with a low-loss dielectric fluid over a metal plate at

various depths and inclinations. Section 2.2 describes

similar data collected using a lossy dielectric slab in

place of the metal plate, with the addition of traverses

taken using objects simulating craters, crevasses, spheres,

and irregular blocks positioned in the dielectric fluid.

Both the above sections contain comparisons of the experi-

mental horizontal-interface traverses with theory; general

agreement is apparent.

A

1-1

b
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Section 2.3 discusses traverses made using the dielectric

fluid with its loss tangent adjusted to various values.

This group includes traverses taken both with and without

the metal plate using objects simulating craters, crevasses,

mountain-sides, and submerged steps and ridges. Section 2.4

describes data collected using spheres positioned in the

low-loss fluid both with and without the metal plate.

Section 2.5 details traverses collected using flat circular

metal plates simulating a buried waste dump at the DYE-3

site in Greenland. Figures i-3, 4, 5 illustrate the various i

complex structures used.

Section 3 describes antenna results obtained since the

last report and Section 4 discusses various experimental

details. Section 5 contains an index to data which has been

recorded on digital tape.

1-2
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2.0 TRAVERSE RECORDINGS

i 'All data discussed in this report were obtained with

half-wave dipoles as transmitter and receiver. Transmission
e

power was in the range 1 milliwatt to 1 watt at a fixed
frequency of 5.9 GHz (corresponding to a freespace wavelength

(wl) of 5.08 cm). Signal detection was performed with a
1N23 microwave diode.

The receiving antenna was driven at .127 wl/sec down

the center of a 30 wl long × 15 wl wide × 1S wl deep fiber-

glass tank (see Figure 1-2) lined with microwave absorber

(Eccosorb CV-3). The tank was filled with Shell Diala

transformer oil having dielectric constant 2.16 and loss

tangent .002.

Except for a few curves in Section 2.3 all traverses

measure the E-Phi broadside component, i.e. both the trans-

mitter and receiver were horizontal and perpendicular to

the traverse direction. Toward the final stages of the model

work it was discovered that agreement between model and theory

could be greatly improved in the .6 wl depth-range for a

horizontal metal plate by switching from simple half-wave

dipole antennas to more sopthisticated and better balanced

slot-fed half-wave dipoles 6. These new dipoles were used to

collect all data in Sections 2.1 and 2.2 except 2.1.3. All

other data were collected with simple dipoles.

In order to minimize unwanted background signal, in some

cases in Section 2.1 and 2,2 a sheet of microwave absorber

was positioned vertically in front of the transmitter at

1.5 wl range. This "baffle" (see Figure 1-5) extended down-
ward to .5 wl above the oil's surface. Traverses for which

2-I

i
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the baffle was in place can be identified by the fact that

the recording begins at approximately 3.25 w] range. Documen-

tation of the small effect of the baffle can be obtained by

comparison of the following pairs of redundant traverses:

i, 32; 2, 18; 87, 91; 88, 98; 89, 107; 90, 115.

The traverses included in Section 2.1 through 2.3 are

plots of digitally processed data which were originally

recorded on magnetic tape. The purpose of the tape is to

permit future convenient access to model data for manipula-

tion and interpretation. The digitization process introduced

high-frequency noise into the data which was removed by

filtering. In some cases additional filtering was used to

attenuate undesirable background signal. The digitization

process also introduced small range errors which seem to be

reflected generally in a shift of the traverses to the right

of about .i wl. In cases where extremely high range resolu-

tion is needed the original X-Y recorder plots of the raw

data should be referred to. See Sections 4.1, 4.2, and 5

for details on recording and processing and an index to

digitized traverses.

Each traverse in Sections 2.1 through 2.3 i,_ labeled to

the right with a run number and other special information.

In addition each traverse has a reference mark on the

vertical axis which corresponds to a fixed received power-

level of nominally -25 dBm. Since the transmitter power-

level is given for each group of traverses a comparison of

absolute signal levels between any two given curves is

possible. A convenient way to do this is to adjust each

reference mark upwards at the rate of I" for each iS dBm of

transmitter power; each adjusted reference mark then repre-

sents a signal power-level 25 dB below the transmitter power.

2-2
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The threshold power-level of roughly -62 dBm corresponds to

approximately 2.5" below the -25 dBm reference mark.

2.1 TRAVERSES OVER A METAL PLATE

In order to simulate a buried perfectly reflecting layer,

an aluminum plate of dimensions 30 wl x 15 wl was designed

for positioning in the metal tank at various depths and

inclinations. The traverses taken accordingly are grouped

in Appendix A. Each curve is labeled with plate depth (D)

and inclination (e). All experimental curves in Appendix A

were digitally filtered to remove unwanted signal of period

approximately .5 wl apparently associated with undesired

reflections off the tank wall at the opposite end from the

transmitter. These reflections interfere with the direct

transmitter energy to set up a standing wave pattern through

A which the receiver moves. The filtering has attenuated by

roughly 50 pergent the close-range oscillations present for

the greater plate depths (see Section 4.2).

2.i.1 Horizontal Metal Plate

Figures A-I - A-3 contain plots of digitized data taken

over the full range of metal plate depths used. Figures A-4

- A-IO are similar plots for smal_ depth increments at shallow

depths taken using the baffle. The dashed-line curves are

theoretical plots of the power associated with the 11z field

component calculated using normal-mode theory developed by

Dr. A. P. Annan. Where the depth used for theoretical cal-

culations is different from the value given i, column "!}",

the correct depth is indicated near the end of the theory

plot.

2-3
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Generally good agreement between experimental aud

theoretical data is apparent. Some disagreement at short-

range is apparent, especially near .7 wl and 1.18 wl depths

and at 3 wl and 4 wl depths. There 3isagreemcnts are probably

associated with inaccuracies in the mode-theory calculations

near certain critical depths. These depths are characterized

by a normal mode propagating at or near the critical angle for

the oil-air interface and are given by

d - (2m 1)[_,/4(K' - 1) 1/2 ] m = 1,2,3 ...m

Where for K' - 2.16 tile bracketed quantity equals .2321 wl.

Thus .696 wl, 1.16 wl, 5.02 wl, and 3.95 wl are critical depths

possibly connected with the above cited disagreements; indeed

recent numerically calculated normal-modc theory {see dotted

curves in Figures A2, A6, h7, and A10) disagrees i. each of

A these cases with regular normal-mode theory. While the dis-

agreement between model and theory is in no ca,;e completely

eliminated by the introduction of this l:lte_t i,q_rove,,ent in

the theory, these discrepancies between the re nult_ of dif-

ferent methods oi computing the theory at least serve to

indicate the difficulty of theoretical calculatio,_ ,ear the

critical depths. In complete contrast to model re,ults the

normal-mode theory shows an absence of o_;cil lation_ in a range

extremely near the critical depths {the dashed lines at .{_9

and 3 wl depths give partial evidence ot thi_}; the numeric-

ally calculated theory at least gives no hint of these nullq.

It should be pointed out that these regions of disagreement

associated with the crxtical depths are quite small and are

consequently probably more of academic than practical concern.

2-4

1975008236-149



The apparent poor fits at the shallowest depths are

probably due to the low signal-levels being dominated by

background signal. A smooth, horizontal line indicates that

the total signal is below system response.

Depth accuracy for these horizontal-plate traverses is on

the order of .01 wl except for both 1 wl curves where a sharp

object with a length of 1 wl was used to locate the oil's

surface very precisely. At many of the depths shallower

than 1.S wl the fits could doubtlessly be improved by trying

different theory depths near the approximate experimental

depth.

2.1.2 Metal Plate-Lateral Slopes

Figures A II - A-13 contain traverses in which the metal

plate was tilted laterally (see Figure 1-4) at wlrious depths.

Each curve is labeled by the approximate plate depth (U) under

the traverse path and by the approximate lateral inclination

(e). Analysis of these curves and comparison with correspon-

ding horizontal cases indicate a general rule-of-thumb that

lateral inclinations not greater than about 2 ° per wavelength

depth do not substantially affect the traverse pattern. Run

47 for I wl depth and Run 44 for 2 wl depth exceed this rough

limit and are distorted relative to more nearly hori=ontal runs.

2.1.3 Metal Plate Forward Slopes

Figures A-14 -A-22 contain traverses in whtch the metal

plate was tilted along the forward direction (s_e Figure 1-3).

Each traverse is labeled with the depth of the plate under the

transmitter (D) and the angle of inclination (0) of the plate.

These numbers are both approximate; the depth figures are too

2-5 i
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small by about .02 x O and O is 1-2 percent too large.

Positive angles of inclination are tho..e for which the plate

is deepest at the transmitter end of the tank. It mig_= be

noted that the depth of the far end of the plate is roL_hly
D - ®/2.

A general tendency is appaz.nt for the broad peak

associated with the angle of the transmitter pattern lobe to

shift to longer range as inclination decTeases. The expected

range of the peak is given by 2d cosO sin(B-O)/cos(_-20).

These ranges have been plotted in Figures A-14 - A-Z2 as

circles and crosses respectively for B chosen first as

the critical angle 42.9 ° and second as the experimentally
]

measured lobe-angle of 57 °. The peak seems to usually lie

between these two values.

_-. Associated with the shift of the broad peak to greater

range there is a typical increase in the period of _he

far-field oscillations. I

Other than these general observations the traverse

recordings are quite sensitive to forward slopes, in contrast

to the case for lateral slopes discussed in Section 2.2.

Even at a 6 wl depth a change of -*1" trom the horizontal

produces a sizeable effect at far-field. Conscqut.ntly, it

; appears that if one wishes to analyze in detail Feaks and :

nulls in fleld data where even slight slopes are possible,
! .

theoretical plo_s for the non-horizontal case will be an ; _

absolute necesrlty, i

: i I

i - 1
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2.2 TRAVERSES OVER A DIELECTRIC SLAB

In order to model a dielectric interface, a epoxy slab

measured (see Section 4.4) to have dielectric constant 6.75

and loss tangen_ .11 was poured from a 10 percent carbon blend

obtained by mixing the following epoxy materials sold by

Hysol (0lean, New York): DP-8-5193 ( 15 percent carbon con-

centrate), R9-2039 (resin), and H2-3404 (hardener). The

relatively high loss tangent was chosen in order to minimize

unwanted reflections off the oil-air interface on the bottom

side of the slab. The slab was positioned in the same manner

as the metal plate. Its dimensions were 30 wl long _ 6 wl

wide x approximately 2 wl thick.

It will be noted that the noise level of the dielectric

slab traverses (Appendix B) is worse than for the metal plate

traverses (Appendix A). This is probably due to the fact that

unwanted reflections off the walls and superstructure of the

tank remain constant while the amount of desired reflection

off the slab is less than for the metal plate. In contrast

.*o the case for the oil-metal interface (100 percent reflec-

tion with 180" phase shift), energy incident normally on the

oil-slab interface is only 28 percent reflected and is shifted

roughly 175" in phase upon reflection. For this cuse the

complex normal reflection coefficient is given in polar coor-

dinates by the approximation:

i
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The traverses discussed in Sections 2.2.1 and 2.2.2

were filtered to remove the half-wavelength background while

those in Sections 2.2.5 - 2.2.7 (except Figures B40 and B41)

were filtered only enough to remove the noise introduced by

digitization (see Section 4.2).

2.2.1 Horizontal Dielectric Slab

Figures B-t - B-3 and B-4 - B-10 contain large depth

increment and small depth increment curves (taken using the

baffle), respectively, for the dielectric slab horizontally

positioned. Theoretical plots are superimposed as dashed

lines; a value of 6.2S rather than 6.75 was used for the

lower medium's dielectric constant, but the difference is

insignificant. The fits are comparable to those for the metal

plate, except for a better consistency probably because of

_, lessening critical-depth theory problems due to the slab being

a pooxer reflector. Low signal-levels are again apparent at

the shallower depths. Some disagreement is possible due to

reflections off the bottom side of the slab. In ):igure B-1

a fairly good agreement is obtained with a theoretical

curve for the case of a lX thick slab over Gil (dotted line).

2.2.2 Dielectric Slab -- Foward Slopes

Figures B-11 - B-18 contain traverses for which the

slab was tilted along the forward direction (see figure 1-3).

The curves are analogous to Figures A-14 - A-22 discussed in

Section 2.1; the same comments made there apply here and each

recording is marked with the identical expected peak positions.

)

A
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2.2.3 Crater Over Dielectric Slab

Since the crater Camelot was situated adjacent to the

Apollo 17 EVA 2 it was decided to use a model simulation

of Camelot to briefly investigate its possible effect.

Figures B-19 - B-22 contain the results; they strongly indi-

cate that Camelot has no significant effect.

Camelot has approximate dimensions of 600 m diameter x

100 m depth. It was centered approximately 1200 m fro1_ the

SEP transmitter and its nearest edge was approximate1,- 100 m

from the EVA 2 traverse-line. Estimates are that at the

Apollo 17 site a K' = 3.54 dielectric medium of depth 20 m
overlies a K' = 6 medium. Our use of the K' = 2.16 oil

as the upper layer is a significant weakness of our modeling
in this case.

Figure 2-1 illustrates with open circles how Camelot

would look relative to the model tank at the different SEP

frequencies. The corresponding scaled interface depth (20 m)

is also given. The cross-hatched circles indicate the

positions of the simulated craters (made from polyethylene

foam) used in conjunction with the dielectric slab for

Figures B-19 - B-22. Actual slab depths used are indicated.

Each run is labeled with the slab depth (D) and range
(R) to the center of the simulation craters. The notation

"REF." denotes reference traverses without craters.

Runs 143 and 146 for craters centered on the traverse-

line for slab depth 1 wl both show modest deviations from

the reference Run 145; however, moving the craters off-center

: 2-9
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until their edges are 1/4 wl away from the traverse-line

(i.e. just out from under the 1/2 wl receiver) partially
removes the deviation in both cases. The same crater centered

for slab-depth .5 wl (Figure B-21) also shows no deviation.

Run IS0 was taken with one-quarter (see Figure 2-1) of

a 3.5 wl crater positioned with its edge 1 wl distant from

the traverse-line for a 3 wl deep slab. The same null

results are present as for the other off-center traverses

above. Since Camelot itself was decidedly off center we

must therefore conclude that Camelot did not affect the

Apollo 17 SEP traverses.

2.2.4 Crevasses Over Dielectric Slab

Figures B-23 - B-26 contain traverses taken using

.-. polethylene-foam simulated crevasses over the slab (Figure l-S).

Section 2.3.4 will contain a discussion of a more extensive

study done using the metal plate. This brief study with

the slab was undertaken to extend the validity of this other

study to the case of dielectric interfaces, and indeed the

results in both cases are quite similar.

In the present case single crevasses of widths approxi-

mately .3 wl, .15 wl, and .1 wl were positioned across the

traverse path. These crevasses had square cross-sections

of approximately 3 wl, 1.S wl, and .75 wl dimensions,

respectively. Each traverse is labeled with slab depth and

range of the crevasses.

Runs 152 - 158 (Run 154 is their common reference)

illustrate results for each of the three sizes positioned
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at 5 wl and 15 wl range over a 4 wl deep slab. At the

longer range all three sizes produced the characteristic

.4 wl ripples ending abruptly at the crevasse. At the

closer range the crevasses (particularly the largest one)

seemed to act to jumble up the near-in oscillations.

The smallest crevasse was used again (Figure B-26) for

a 1 wl slab depth and this time the preceding ripples are

visible at both near and far range.

Clearly, crevasses may be expected to be as easilv

visible for dielectric interfaces as for a perfectly

reflecting interface.

i

2.2.5 Spheres Over Dielectric Slab

_-_ This is an abbreviated version of a more complete study

(see Section 2.4) of the _ffect of spherical scattering

objects. Here again we can conclude that results for the

metal plate and dielectric slab are similar.

Figures B-27 - B-29 illustrate the effect of varying

sizes and composition (metal and dielectric constant K' = 6)

of spheres centered 4 wl deep at 5 wl range, with the slab

positioned 6 wl deep. The .5 wl diameter spheres _eem to

produce minimal effects, especially at longer range. At

1 wl diameter the effect of the spheres becomes dominant

and at 2 wl diameter the traverse is totally changed from

the reference.

Figures B-30 and B-31 illustrate the effect of varying

range for the 1 wl diameter, K' - 6 sphere positioned 4 wl

g_
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deep over tile 6 wl deep slab (the reference traverse would

still be run 162 in Figure B-27). There is little effect
for 0 wl but considerable effect at 5 wl. At 10 wl and

greater range there is a characteristic sequence of about

three following peaks of period approximately 1 w] which

begin directly above the sphere. At 15 wl and greater range

small rapid crevasse-type echoes preceding the sphere appear.

Figures B-32 - B-33 feature the same 1 wl diameter,

K' = 6 sphere now sitting directly atop the dielectric slab

positioned at 2 wl depth. Here again, at 0 wl range the

sphere has little effect. At 5 wl and especially at 10 wl

range the sphere's presence causes large distortions in the

traverse recording. Interestingly, for positions greater

than I0 wl range the total distortion becomes less, even

for the parts of traverses lying beyond the sphere range.

A For all non-zero sphere ranges the crew_sse-echo type ripples

are present, especially for the 10 wl range sphere.

Figure B-34 illustrates the lessening of the amplitude

of these ripples as the sphere is moved to one side of the

traverse path. Moving the 5 wl range sphere 1 wl to the

side practically eliminates its effect. However, the 10 wl

range sphere had to be moved to 1.5 wl off-center to achieve

the same effect, perhaps only because the ripples were much

larger to begin with.

2.2.6 Simulated Crevasse in Dielectric Slab

To obtain some sort of idea about the effect of a

crevasse located in the buried dielectric layer without

actually cutting into the dielectric slab, a rectangular
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strip of polyethylene foam was attached to the top of the

slab (Figure 1-5). This was done partly under tile assumption

that the effects of such a crevasse would be associated with

reflections off its top rather than off its vertical inter-

faces. In position the two strips used had a vertical dimen-

sion of .5 wl and were 4 wl long; their dimensions along the

range-axis ("width") were .25 wl and .5 wl.

Figures B-35 illustrates the effect of the .5 wl wide

simulated crevasse at ranges of 5 wl and 15 wl over the 2 wl

deep slab. At the 5 wl position, this crevasse produces

gross distortions out to 15-20 wl while contributing near-in

oscillations of approximately .75 wl. At the 15 wl position,

this crevasse contributes gross distortions at ranges beyond

its position while also producing preceding echo-type ripples

which drop dramatically in frequency as the receivcr passes

_. over the crevasse. The .25 wl wide crevasse in Figure B-36

contributes the same type disturbances substantially reduced.

In Figure B-37 the .25 wl simulated crevasse is

positioned at 5 wl and 15 wl ranges over the 1 wl deep slab.

Its effect at both positions is seen to be small.

2.2.7 Random Blocks on Dielectric Slab

To get some idea of the distorting effect of small

irregular "blocks", thirteen scraps of the same (K' --0.75,

loss tangent _ .11) material as the slab were arranged on

the slab in an area 3 wl wide extending out to 13 wl range.

The arrangement is indicate4 in Figure B-38 to scale. Each

block is labeled L ("large" -- approximate cubes of about

.6 wl dimensions)j M ("medium"), and S ("small" -- dimen-

sions about .15 wl).
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Traverses were recorded at integer horizontal dei)ths

from 1 wl - 6 wl. Tile results (Figures B-38 -- B41) (see

Section 4.2 for filtering details) are disappointing. Only

at one depth (4 wl) is there even a remote resemblance to

corresponding traverses taken without thc blocks (Figures B-1 -

B-3). Although this is admittedly a small sample, certainly

indications are that buried blocks must be a small fraction

of a wavelength before their effects can be treated as

perturbations and hopefully filtered out. A very crude

quantitative estimate can be obtained as follows, h .b wl

block is about .9 "wavelengths-in-the-medium" for the oil.

If we arbitrarily choose .5 wavelengths-in-the-medium as our

maximum-size standard, then for a K' -- 4 upper layer,

buried blocks would necessarily be .25 free-space wavelengths

or under before one could hope to obtain useful SEP data.

2.3 VARIABLE-LOSS DATA

A variety of data was collected both with the pure oil

and with the oil doped to various loss-tangent values with

benzonitrile obtained f.om Velsicol Chemical Corporation

(Chicago). Unfortunately, the higI loss-tanyents contributed

to low-signal levels and consequent.), much of this dat_J

suffers from high noise levels. The curves discussed below

were plotted from digitized data. The traverses included in

Sections 2.3.1, 2.3.2, and 2.3.6 were filtered to remove half-

wavelength background; all other curves were filtered only to

remove digitization noise (see Sections 4.1 and t.2). The

original curves were incorporated in a memo entitled "SEP

Simulation Model Y''7. The approximate measured values of loss

tangent/dielectric constant are as follows: .002/2.1o)

•012/2.17, .025/2.21, .042/2.21, .073/2.30, .142/2.48

(benzonitrile 3 percent by volume).
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_IIA 2.3.1 ltalf-Space at Various Loss-Tangents

Figures C-1 and C-2 include traverses recorded at each

loss-tangent used, with the tank empty of objects. These

traverses _ere intended to simulate half-spaces but obviously

they do not, apparently because unwanted reflections off

the tank wall and superstructure were too large. Therefore,

these traverses can more reasonably be taken as measurements

of the background signal level for the oil-tank. Two

traverses are recorded at .002 loss-tangent -- Run 199 with

the transmitter-receiver pair identically oriented and

Run 200 with the receiver rotated 180 ° . The odometer signal

for Run 201 was artifically introdl_ced during digitization,

since it was inadvertently left out during recording of the
FN data.

2.3.2 Horizontal Metal Plate at Various LossyTan_ents

Figures C-3 - C-17 contain suites of large-increment

depth curves for each of the six loss-tangents used. As

loss-tangent increases the effect of the plate diminishes

to the point that at longer range the traverse recording

is independent of plate depth, i.e. the signal associated

with the plate become_ buried in the high background signal

level. Insofar as comparisons can be made, the traverse

pattern changes little with loss-tangent. The odometer

signals for Runs 216-222 were introduced artifically as in

Section 2.3.1. Comparison of plots of the digitized and

original data showed that no significant error was introduced

by this.

A
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2.3.3 Crevasses in ltalf-Space

Figures C-18 - C-22 contain half-space traverses taken

with single crevasses (Figure 1-5) simulated by a wedge of

lossless, non-porous polyethylene foam of estimated dielectric

constant 1.1. It was desired to simulate a crevasse of

length 30 m, depth 30 m, and hidth 3 m at the top tapering

downward to zero width. At 32 blHz this corresponds to a

crevasse of dimensions approximately .3 wl top width × 3 wl

length × 3 wl depth, at 16 MHz .15 wl x 1.5 wl × 1.5 wl,

and at 8 MHz .1 wl x .75 wl x .75 wl. The crevasses were

oriented at 0 °, 45 °, and 90 ° angles (0 in the figures)

relative to the traverse path, with 0 ° corresponding to the

width dimension lying along the traverse line. All the

single crevasses were centered at 5 wl range (R).

Two field components were measured: broadside E-Phi

(both dipoles horizontal and oriented perpendicularly to the

traverse-line) and E-Rho (same as E-Phi broadside except

the receiver is oriented parallel to the traverse-line).

All crevasse recordings have been filtered to remove only

high frequency digitization noise. However, this is not

true of the reference traverses in Figure C-18 from which

most of the half-wavelength signal has been removed. The

lowest loss tangent of .002 was used for all curves in this

section.

Analyzing Figures C-18 - C-22 it is apparent that only

Runs 257 and 263, both E-Phi components with crevasse

cutting perpendicularly across the traverse-line, contain

even barely visible perturbations due to the single crevasses.

A
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I- 1Figures C-23 and C-24 contain traverses taken with a

set of six .15 wl x 1.5 wl x 1.5 wl (16 MHz) crevasses ali

parallel and spaced 1.5 wl apart. The crevasse set was

rotated about its center, which was positioned at 9 wl range

(R). At the 0 ° position the array extends from 5 wl to 13 wl.

As in the singe1 crevasse case, the only significant distor-

tions are for the E-Phi perpendicular-crevasse case.

2.3.4 Crevasses Over Metal Plate i

Figures C-25 - C-37 contain traverses taken with

simulated crevasses positioned over the metal plate which

was held at a constant 4 wl depth. The crevasses were

positioned in an identical fashion to that of the previous

section and the same terminology is used for labeling the

curves. In addition to traverses analogous to the low-loss

_ traverses in the previous section, data was collected at

three higher losses for the E-Phi component only. Note

here also that the E-Phi reference curve has been filtered

to remove .S wl signal; all other curves have been filtered

as in the preceding section.

Figures C-26 - C-29 illustrate the sensitivity of the

size of the distortion produced to the size of a singlc

crevasse placed at 5 wl range. The .3 wl wide (32 MHz)

crevasse produces sizeable distortion,, for all components

and orientations while the smaller .15 wl wide (16 _lz)

crevasse causes significant distortion only for the E-Phi

perpendicular crevasse case. Note in Runs 276 and 282 that

the period of the disturbances associated w_th the near-in

(5 wl range) position is about .6 wl in contrast to the

characteristic .4 wl echo-ripvle produced by more distant

A
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crevasses (see below and Section 2.2.4). Figures C-30 and

C-31 show again the smallness of the perturbutio,; produced

by small crevasses (see Runs 226 and 236 for reference

traverses).

Figures C-32 and C-33 illustrate the effect of the set

of six 16 blHz crevasses. In contrast to the half-space

case, distortions are produced for all components and

orientations. '_ote the shift downward of the period of the

oscillations in Run 294 as range increases. Figures C-34 -

C-37 contain recordings at higher loss. tangents of the

E-Phi component at 0 ° and 90 ° orientations of multiple-

crevasses. Comparing Figures C-3S and C-36 it seems apparent

that there is a sharp drop-off in crevasse visibility

between 16 and 8 MHz.

_ 2.3.5 Crater

During the SEP 3uneau Ice-Field Expedition a small

crater was formed by use of explosives. Rather unsuccessful

efforts were made to model this feature. The crater has

approximate dimensions of 11-14 m diameter x 3.5 m depth,

and was located at a range of 263 m at an offset from the

traverse line of 10 m. These dimensions were modeled at

32 and 15 MHz with polyethylene foam objects.

Figures C-38 - C-40 illustrate the effects of the

simulated crater at various loss-tangents for the hal(-spacc

case and for one arrangement over the ¢ wl deep I)late.

Without exception, comparison of these curves with the.

corresponding reference curves in Figures C-1) C-2, and C-14

reveals only very minor perturbations associated with the

A
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crater simulants. Undoubtedly this is partially due to the

high loss-tangents and consequent large background signal.

It seems quite likely that for optimum conditions crevasse-

like ripples should precede a crater which i5 placed quite

near the traverse-line; however, this study indicates that

these ripples would be small in absolute amplitude.

2.3.6 Mountainp Step, and Ridge Simulations

This last group of digitized curves (all E-Phi broad-

side) was concerned with studying the possible effect of the

Juneau Ice-Field Data of the valley side and of submerged

bottom irregularities (Figure 1-5). Since these features

would have been most visible at the lower frequencies where

the loss-tangent o_ ice is greatest, modeling wa. done at

high loss-tangents where previously noted high background

signal levels ex2sted. The longer range portions of the

recordings should be ignored du_ to high background signal

leveis, since traverses at the low-frequencies simulated are

typically short in terms of wavelengths, and sihce in some

cases the simulated objects did not extend the whole length

of the tank.

Figures C-41 - C-45 contain traverses taken using flat

metal plates to simulate the presence of a reflective

mountain-side which is submerged and inclined at 30" from

the horizontal. The actual distance in the model of the

transmitter from the base-line of the mountain-side was

varied to maintain the scaled distance correspondin_ to

173 ft. (approximately 1.4 wl, .7 wl, and .35 wl at 8, 4,

and 2 MHz, respectively). Traverses were run in three
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directions relative to the base-line; O is the angle be-

tween the traverse-line and base-line (c._., 90 ° corresponds

to a traverse made perpendicularly away from the mountain-

side). The modeled frequency in Mttz is given for each

curve. It can be seen from the effect of orientation changes

that the simulated mountain-side has a large effect;

comparison of Figures C-42 and C-43 at short range indicates

that changes in orientation are dominant over changes in

transmitter to base-line distance.

Figures C-46- C-S1 illustrate the effect of an

irregularity in a submerged horizontal reflectlve layer in

the shape of a 200 ft. rise or step in the depth of the

bottom layer. The connection between the 490 and 290 ft.

deep portions was a 45 ° ramp. This feature was modeled with

metal shapes at 8, 4, and 2 MHz at loss-tangents of .042,

_.. .073, and .142, respectively. The 490 ft. deep lowest

portion of the bottom was 4 wl, 2 wl, and 1 wl deep at these

respective frequ,'ncies (see tTaverses labeled as references).

The transmitter position and traverse direction are

indicated for each traverse by a two digit number in the

column labeled "TR" ("transmitter-receiver"). The first

number (1 equals "top", 2 equals "bottom") indicates whether

the transmitter was positioned over the top of the ramp or

the bottom. The second number (1 equals "toward", 2 equals

"away", 3 equals "along") indicates whether the traverse-

path was toward the raised por*.i_n of the bottom, away from

it, or along the 45 ° connecting ranp. Figures S0 and S1

contain small sketches indicating the step's posit_on and

size relative to the oil-depth at 2 Mllz. At the 4 and 8 Mllz

frequencies the step is twice and four times larger,

respectively.
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For a given loss tangent, runs having the same second

digit differ only in that the step was moved slightly re3a-

tive to the transmitter. The dif[erences in these recordings

are therefore a useful measure of the effect of the ramp

itself. Comparisons of the traverses in which the ramp does

not lie under the recorded portion of the traverse (those

labeled 22, 12, and 23) with thc corresponding reference

traverses also indicate the visible effect of the ramp.

Both these comparisons indicate that the dominant nature of

the presence of the steps tends to diminish as the modeled

frequency decreases and the loss tangent correspondingly

increases. For medium ranges the curvcs labeled 21 and 11

are almost certainly controlled by the 290 ft. depth, i.e.,

they would resemble simple horizontal plate traverses modeling

a 290 ft. reflector depth.

_ Figures C-52 - C-54 contain traverses simulating a

reflective 200 ft-high ridge having 45 ° sides and positioned

on a horizontal reflecting bottom located at a depth of

490 ft. These traverses are analogous to the step traverses

discussed immediately above and are notated similarly.

Figure C-54 indicates the ridge size and position at 2 _[z.

Reference curves for Figures C-52, C-$3, and C-54 are Runs

33S, 541, and 347 respectively.

As might be expected, the six rxdge traverses labeled

"22" and "23" are identical to the corresponding six step

traverses similarly labeled. Comparison of the remaining

three traverses (labeled "21") to the corresponding reference

curves listed above graphically exhibits the effect of the

ridge in the case when it is placed just in front of the

transmitter.
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2.4 SPHERICAL SCATTERING OBJECTS

In order to get a preliminary idea of the effect on

traverse data of the presence of buried scattering objects,

spherical objects of varying size and composition were posi-

tioned in the oil tank both with and without the metal

reflecting plate.

Three different sphere compositions were used: solid

teflon (K' = 2.1), thin-walled hollow fiberglass spheres

loaded with low-loss K' = 6 material, and aluminum foil

covered spheres (at 6 GHz the foil used is 20 penetration

depths thick, therefore the sFheres are effectively solid

metal). Sphere diameters ranged from 3 wl to .5 w] (wl = 2").

For the most part, three basic positions were used, all

located in the vertical plane containing the traverse path:

_. (1) 16 wl out and 2 wl deep (far out and shallow), (2) 5 wl

out and 4 wl deep (in the transmitter beam), (3) 4 wl deep

under the transmitter.

Figures D-1 - D-17 contain reduced reproductions of the

original recordings. As indicated in small sketches in each

Figure, d is the plate depth (d = _ implies the half-space

case without the plate), D is the sphere diameter, and

d' and y the depth and range, r_spectively, at which the

sphere is centered. Short horizontal marks to the left of

each curve indicate a received power level of appro×Jmately

-37 dB relative to the transmitter power. The received power

scale of 1S dB/inch is indicated in Figure D-1. The deep,

almost vertical minimas in Figures D-6, D-10, and I)-!4-17

are due to an instrumentational problem and should be

treated as ordinary minimas.
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The data genereted can be thought of as providing

insight to the following question: "Given a specific loca-

tion, what is the effect of the presence of a buried object

at that location as a function of the object's size and

composition?"

In general the effects noted were quite complex but some

features did stand out. Understandably, the effect of the

scatters was more apparent in the half-space (Figures D-6 -

D-17) than in the two-layer case (Figures D-I - I)-5),

since power levels are generally larger in the two-layer

ewironment. In all cases the teflon spheres were partically

"invisible", which was to be expected due to the low dielectric

constant contrast between teflon and our oil (2.1 vs. 2.16).

The metal spheres were, somewhat surprisingly, only slightly

more "visible" than the K' = 6 spheres; however, K' = 6

... material was in fact used because its Z' being approxi-

mately 3 times K' for the oil supposedly makes it a good

reflector.

Of the three basic scatterer positions listed above,

the one at which the most prominent effects were noticed

was predictably the position in the transmitter beam

(Figures D-3 and D-IO - D-13). Only in th! _sition were

the 1 wl and .5 wl diameter metal and K' = _ spheres signi-

ficant; at the other position even the 2 wl spheres were not

expecially prominent. Other effects noted for this "beam"

position were broad peaks caused by the 3 wl diameter

spheres at approximately 15 wl, and sizeable increases in

the half-space power levels.
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At the "under transmitter" position (Figures I)-I-I)-2

and D-6 - D-9) the 2 wl and larger spheres caused changes in

the near-in region and increased half-space power levels.

For the "far-out" positions (Figures D-4 - D-5 and D-14 - D-17)

two features are apparent: disruption of the usual pattern

at ranges beyond the scatterer position (little distruption

of near-in signals by retro-reflection from far-out objects

was noted), and the addition of small but quite visible

short-period oscillations having periods in the .4 wl - .8 wl

range (the standing wave pattern in the region between a i

point-source and a plane-reflector is .S wl) which disappear

beyond the scatterer. In the half-space case these

short-period oscillations decrease in period from roughly

.8 wl to .5 wl as the receiver nears and passes over the

scatterer, but in the two-layer case (both for plate depths

of 6 wl and 2 wl) the oscillations increase somewhat from

.-. .S wl as the receiver nears and passes over the scatterer.

Both features listed above are readily apparent in a suite

of two-layer curves with a scattering sphere placed at

various ranges (see Figure D-4).

2.S DYE-3 SIMULATION

Figures E-1 - E-2 contain a single set of traverses

simulating the effect of a buried waste water pit at the

DYE-3 site in Greenland. The pit for our puT!:ose._consists i
of a discus-shaped region of contaminated snow which

supposedly would be reflective. The top ef the pit is

approximately 100 ft. deep and the pit's diame*er is approxi-

mately 120 ft. These dimensions were modeled at the six

SEP frequencies using a set of thin, flat metal discs

(Figure 1-5) having the appropriate diameters and positioned

2-25
}

1975008236-170



at the appropriate depth. All six discs wele positioned at

the same range of S wl. One hundred feet corresponds to

approximately .i, .2, .41, .81, 1.63, and 3.25 wl for

frequencies 1 through 32 MHz, respectively.

The range and diameter of each disc and the corresponding

frequency of each traverse are indicated on each curve.

Also indicated is the "disc's image" which is the portion of

the traverse-line where the receiver receives direct energy

reflected specularly from the disc.

The disc's presence begins to affect the pattern at

2 and 4 MHz in very narrow regions just above each disc's

position. AT 8 MHz the distortion is evident out to 1S wl

range, At 16 and 32 MHz the disc's effect is totally

predominant over the full traverse and at 32 MHz there is

A a very strong peak in the image area. Observationally, it

appears that the waste dump would be come noticeable at

8 MHz as a large maxima located just bey,_nd its location, i

Interestingly, there are half-wavelength ripples preceding

the disc at 8 and 16 MHz.
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3.0 ANTENNA PATTERNS

3.1 HORIZONTAL ELECTRIC DIPOLE

The antenna patterns in Figure 3-1 were included in

previous report 5. Figure 3-2 illustrates the coordinate

system used (all horizontal dipoles were oriented parallel

to the x-axis). The substantial difference between the
2

measured and theoretical E_ (y-z) dipole patterns s for the
oil=air interface was an immediate cause of concern. The

patterns in Figure 3-1 were measured at a receiver radius

of 3 wl; Figure 3-3 shows that the measured pattern of

concern tends to "droop" downward toward the theoretical

pattern (with its power maximum at the oil=air critical angle)

as the radius is increased to 6 wl. Figure 3-4 illustrates

that the 3 wl radius pattern droops as the loss tangent is

_ increased to approximately .142; however, this droop is

approximately equal to that expected due to the measured

increase in the oil's dielectric constant associated with

the addition of the high-loss fluid. A skirt aipole 6 was

also fabricated, but its pattern (top of Figure 3-5) was

very similar to that of the conventional dipoles.

_2
Apparently then, the E_ (y-z) pattern measured can be

made to agree more nearly with theory only by increasing the

receiver radius. Since the theoretical pattern is calculated

at infil_ity and since antennas with directional patterns

typically have extended near-field distortions, it seems

-2 (y-z) pattern is
reasonable to conclude that the measured E%
valid.

T_
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3.2 VERTICAL ELECTRIC DIPOLE

The skirt dipole mentioned previously was also oriented

vertically, thus constituting a vertical electric dipole.

The patterns measured are given in the bottom part of

FigUre 3-5 aloDg with theoretical patterns taken from

Cooper 8. Interestingly, the disagreement with theory is

about the same for the vertical as for the horizontal

electric dipole.

3.3 VERTICAL MAGNETIC DIPOLE

In an attempt to construct a true magnetic dipole [or

the model a loop of diameter .04" ( .02 wl) was fabricated

from .02" diameter coax. This loop was of slightly smaller

size measured in wavelengths than the Apollo 17 SEP receiver

A loops were at 32 MHz. Although the loop appeared physically

suitable, its antenna patterns (Figure 3-6) were disappoint-

ing; quite possibly simply because the loop was not much

larger than the feed coax. However, when oriented as

receiving antenna in the direction indicated in Figure 3-6

the traverses recorded were essentially identical to standard

traverses.
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Figure 3-I -Antenna patterns.

:3-3

"'_' " -- .......... 1975008236-174



/,

X
2

E_(x-y)

i

Ftgure 3-2. -Antenna measurement coordinate system.
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Half-wave Electric Dipole
At Oil-Air Interface--
Theoretical and Fx_erimental

E2(y_z) Patterns

A,Igle of
Power Maximum

*++ Cooper--K':2.16....... 43_'

-- 6),radius.............-52_Experimental --- 4.5_ radius...........--54°
••• 3_ radius.............57 _

Figure 3-3. - Antenna pattern at various radii.
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Ftgure 3-4. -Antenna patterns for htgh loss-taP_gent.
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_4easured Theory

Horizontal _ t-_'_-_
Electric Dipole

1:Ir_::_l_:!I'l
E_ (y-z) Oil-Air !t _ i_L/T t ![_ _-:_!'-:i

Vertical
£1ectric Dipole l j_ _*' _ '

_,-_ o,1._,_ _

F|gure 3-5. -Sktrt d|pole antenna patterns.
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Ftgure 3-6. -Magnettc d|pole antenna patter.s.
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4.0 EXPERIMENTAL DETAILS

4.1 TAPE RECORDING SYSTEM

The system designed for recording mode] data is illus-

trated in Figure 4-1, It essentially consists of a mechanism

for conversion of the analog signal strength voltage to a i

frequency modulated signal suitable for magnetic tape

recording. 7he dependence of frequency on signal (in this

case 72.6 ttz/dB) is determined (see Figure 4-1) by the tripie

product of the log-amplifier output factor (.02 volt/dB), the

amplification factor (6.05), and the VCO conversion factor

(600 Hz/volt).

The system was initialized so that a 30 mV receiver-

diode signal (corresponding to the received power-level of

about -25 dBm above which the 1N23 diode began to be

noticeably non-linear) was recorded as 3000 Hz signal. In

the VCO (left) channel each traverse was begun with a short

voice a-_otation followed by a 3500 ttz start-tone and ended

wlt, a 4000 Hz stop-tone.

In the right channel the 5200 Hz reference signal (used

' to compensate for tape speed irregularities) was superimposed

on a pulsed 420 Hz odometer signal. The odometer pulse-rate

was nominally .0642 wl/pulse.

4.2 DIGITAL CONVERSION AND PROCESSING

To permit computer processing of the frequency

modulated model data (discussed in the previous section),

use was made of the Data Acquisition System (DAS) built to

pzocess SEP field and lunar data. The digitized data was

recorded on 7-track incremental tape in BeD format.

4-[
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t
1'he frequency modulated-to-digital convcr,_ion procc_,,

basically worked as (ollows. The trcquency ;nodulated t,tpc. _,

I_'ere played-back at ox'igiqal speed into the DAS and cv,.'rv

o7.5 msec the number of cycle: of the V('O _i_,nal (cont;iinin_,

the signal power inforlllatioll) h'a,; tOtlllted !oF ;I l,t, "led o[

Iapi,_ox,-uitely 53 reset. During this same period tilt" Iltllllbt'l"

of cycles of the 5200 tt: reference -,i,t:nal iclectronlc,lllv 11

separated from the 420 tt: odometer pul so', ) u'as also count cd. !I!

llach pair of $200 II:'/_,CO readln_:,; _':l,; then l_.'COldt'd o:1

the incremental tape as one six-digit _,¢t)rd _,.ith tl_c flr.,,t

three digits for the 5200 I1: rcadilxg and the remaining thr,'e I

digits for tile VCO reading. One-hundred lt_rtv-_hrt'e I,t)l'dS !
constituted one "record" and tile roughly 23 record:; needed

for each traverse constituted a single "file".

... To obtain range information, the 420 [1 odoPt, tc! <.lt;ii,ll

pulses i_ere acctimulated by the D:\S durin,t' the plavb,tck. '[b,t'

accumulated number of pulses _,'as read o_:to the d_ital taint'

(substituting for a 5200 II=/VCO i_,ord) cvcrv 5.2,1 qct ,is the

middle four digits of the 40th, q4th, and 1.12rid %,(,r,I, ot each
c

lecord. In addition, _'ords ,1-, -18, 9q, '_t,, and 1,1; _c!c

occupied by at combination of the run nulul,ci ;i,;,.I/_lled 1o t, itt}l

traverse (first three digits) :lnd svnchroni.at ion pul.<,( ,

intended for a t_'ang calculator (rc!nainin,tt l]ll't't' di,v, lt<;).

As tile digital tape _'aq procc,';sed each 5'110 tl,,/vt" vample
J

was converted back inlo a power r,'ading by the Iollo_'tllg

formula :

power (dB_ = .,, 5200 It_, , number \'cTtl cvclcq ,.,..'6 ll'zl,ll_ , numt4iq'-2U._57r_i:._C:pire;
i
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Maximum and minimum power limits were establi,_hed ,it ;tl_proxl

mately -19.5 and -02 dBm received po_'er-lcvcl._, corrc:,l_ondin_;

to VCO signals of 3000 and 300 It.-, respect ivcly.

The odometer readings k'ere convertc ! into range rc;_,ting._

according to the formula:

range (wl/ = .11042 _,1 x ",!ometer cot.nt II],IIII_'OF.

Next, each power reading _'as asbi._ned a l'atl_e va!uc 1,_ iIttcr

polating bet_'een the ranges of the t_,'o noare._t O_]O:_lO!t'l

read ings.

For purposes of plotting, the data .qtrcam of power

read;.ngs and assigned ranges _as san, plt'd at 0.1 _'1 incrcmcnts.

For the usual case of no data point having thc de,;lrcd ranv, c

.,, the two neighboring t_oints _ere used for interpol,ttion.

Since all model recordings started at some non :ere fan,c,

the proper starting range was added before plottint:.

Figure 4-2 illustrates a particular traverse plotted

after the above interpolation without filterin£. \l_o

shown is the original X-Y plot of the trave,_e. It i,

apparent that somewhere in the recordir._ and di,_tt l"atzo;_

process approximately 1 dB of high-frequency noise h,_s

been added. At the bottom of Figure 4 2 is thc trdvcr,,c tn

final form after being filtered with aq ll-point t iltcr

designed to remove both the high-trequcncy noist' al/d tile

unwanted ripples of approximately .5 wl _avclcngth. l'hl._

filter operated by replacin,_; the power readings at a given

point with a weighted average of the orl£inal point plus

the five nearest points (spaced tit .1 wl [nt'l't';llt'tlt.,,) Oil
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each side. The weights were .2441 for the central point and

.2078, .1239, .0445, .0041 and -.0023 respectively for the

receding points. The ideal length of the filter was 1.2S

cycies/waveiength.

The filters used were designed using,, a program wr.;tten

by Mr. James Rossiter following the technique of (',old and

Rader 9. The program generates filter-weights from a given

ideal band-pass filter and a given desired number of weights.

The program operates by Fourier transforming the ideal band-

pass filter, making an approximation to that transform subject

to the imposed limitation on number of weights, and Fourier

integrating the approximation to generate the final filter

and the corresponding desired weights. Figure 4-3 illustrates

the ideal and generated filters for a t5-point filter designed '

and used to reject onIy high-frequency digitization noise.

_. The weights for this filter are as follows: .5782, .2972,

-.0642, -.0546, .0333, .0067, .0078, and .0003.

The IS-point filter used in figures B40 and B41 had ideal

length .3125 cycles/wavelength and used weights as follows:

.1286, .1231, .1081, .0862, .0609, .03()5, .0107, .I)042.

4.3 POWI'R Mt!ASURILMENT

To be able to express received signal power relative

to transmitter power, it is of course necessary to measure

the actual power being transmitted. The most straight

forward method would be to place a dual-directional coupler

in the transmitter feed line and to simply measure the

forward and reflected power levels, the difference between

the two being the power dissipated (and assumed transmitted)

at the transmitter. Another method would be to use a single
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directional coupler to measure the forward power and a

slotted-line to measure the ratio between the forward and

reflected power, thus yielding by calculation the reflected

power and the transmitted power. The actual method used

was to calibrate the slotted-line in terms of power and use

it to measure the transmitted power. This technique uses

the relation that the net power transmittcd forward through

a slotted-line is equal to the product of the square roots

of the minimum and maximum power level of the standing wave

pattern in the slotted-line, symbolically

z/2 i/2
PTR = (PMin) (PMax)

This can be shown as follows. 1'he transmitted power is

equal to the difference between the forward power P and
0

the reflected power P .

PTR = P " pO r

Since power is proportional to the square of the associated

electric field,

PTR = K(E2o E2)r = K (Eo + l:r)(Eo lit }

But E + E and E E are the maximum and minimum
o r o r

fields so

PTR = KE E = (p )1/2 (I,M )1/2max min Max in

Which was to be shown.
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Actually the power levels are measured as a voltage propor-

tioned to power by a detector element so we rewrite P asTR

= 11/2
PTR C (VMax) 1/2 (VMin.

where C is a factor dependent on the detector sensitivity

and insertion depth of the detector probe. Calibration may

be accomplished quite easily by substituting a power meter

for the transmitter to measure directly the dissipated

(in this case absorbed) power. In practice one chooses a

desirable power level and detector voltage, say 1 mW and

S mV, respectively; adjusts tile power source for a 1 mW

power meter reading; and inserts the detector by trial-and-

until its (VMax) 1/2 (VMin)1/2 equals 5 mV to within
error

the desired accuracy. For high accuracies, any nonlinearity

of the detector can be compensated for by noting the

(VMax)l/2 1/2(VMin) detector reading for other desired power
levels.

After calibration the transmitter is reconnected and

power source adjusted until (VMax)l/2 (VMin)1/2the reaches

the desired value.

4.4 DIELECTRIC PROPERTII!S TEST-CELL

It was necessary to have the capability to measure tile

dielectric constant and loss-tangents of various solid and

liquid materials used in conjunction with the model.

Consequently, a test-cell was assembled from the following

General Radio Type 900 precision coaxial components: a

reference air-line, a short-circuit termination, and a

coaxial adaptor compatible with the slotted-line. The short

4-6

1975008236-185



and air-line formed a liquid-tight seal, permitting the cell

to be operated with it_ axis vertical for liquids.

Readers are referred elsewhere for the complete theory

of standing-wave dielectric measurements 1°. In this speci_l

case for which samples of a special length are placed flush

against the shorted end of a coaxial cell the theory is

greatly simplified. The essential point (see Figure 4-4)

is as follows: if a sample is adjusted (usually by

trial-and-error) in length until the nearest minima ill tile

standing wave pattern is located exactly 1/4 wl (1/2 wl)

from the sample then the sample itself must "contain"

1/4 (1/2) wavelengths. But of course a wavelength inside

the sample is not the same length as in air; it is shorter

factor (K_) 1/2 equal to the square root of the relativeby a

dielectric constant of the sample material. Restating all

_.. this mathematically we have:

1/4 X -case 1/2 X -case
m m

1 h
m m

d : 7[=- d = T-"

where d equals the sample length and _ denotes a wave-m

length in the sample. Above it was stated ttmt

Am = t/ (K;) 1/2 . Substituting this we get

d = _ I d --

4 [ z OK;)1/2
t

A
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Finally, solving for K' we see that we have solved for
m

K' in terms of the sample length:
m

K' = C_14d) 2 K' = (_IZd) 2
m m

For these special cases the loss-tangent of the sample

material is given by

tan 6 = Ax/dk' tan 6 = ^x/d
m m m

where we have introduced a new experimental '_antity Ax,

the distance between two points in the slotted-line standing-

wave pattern where the power-level is twice that at the

minimum-point between them. So we can find both the dielec-

tric constant and loss tangent for a materJ'_l simply by
m

knowing d and measuring Ax when the above special condi-

tion is achieved. We can tell when this special condition

occurs by keeping track of the sample length (as the length

is adjusted) and noting when the slotted-line standing-wave

pattern shifts from its empty-eel] position a distance

_/4 - d (X/2 d for a half-wavelength sample) toward the

sample.

There are various limitations in the technique. The

simple formulae above begin to become significantly

inaccurate when the loss tangent of the material exceeds

.1. On the other hand there is a minimum lcs_;-tan_ent

(approximately .002) that can be measured since there is

a finite Ax (partially nonrepeatable) due to losses in the

slotted-line and the various connections. Another difficulty

is est;mating a_curately the length of liquids samples
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r
and allowing for the amount of liquid sample flowing into

small voids associated with the center coaxial contact;

these difficulties probably contributed about 1.5 percent

and 3 percent errors respectively to measurements of loss
|

tangent and dielectric constant of liquid samples.

4.5 ANTENNA-PATTERN MEASUREMENTS

To study the patterns of various antennas both in air

and at an oil-air interface, a system (Figure 4-5) was

designed to automatically record antenna patterns. To

record a pattern the transmitter was first po,;itioned near

the center of tile tank and a motor-driven fixture which

rotated the receiving antenna about the transmitter was

mounted on the side of the tank. A potentiometer coupled

to the motor-shaft _as used to produce adc voltage

_., proportional to the angular position of the receiver. Tl:is

analog voltage together with the receiver signal were

processed through a polar-to-rectangular coordinate converter

which allowed the antenna patterns to bc plotted tn polar

form on an X-Y recorder.

Figure 4°6 diagrams the circuit used. Since the

converter had only a 180 ° coverage it was necessary to do

each pattern in two halves_ reversing both I)PDT switches

shown between halves. The potentiometer was initially

centered (thus setting the 0 -input voltage to zero) for

the receiver positioned directly underneath the transmitter.

Tile converter was sufficiently accurate that an essentially

perfect circle could be drawn using a constan_ r-input.
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Figure 4-I. -Tape recording system.

, !
, I

4-10 _.

i
• k

1975008236-189



4"11

1975008236-190



f
RESPONSE

/ 15- po_T FILTin

rim*

f , I"---==
]. 2 3 ',t

FREQUENCY (CYCLES/W,_v[L[_GTH)-)

Figure 4-3. - ;ilter generation

A

4-]Z

1975008236-191



I
I

....'
I

I I ill ! I_ I J / • / _1 / I _ EMM";"
!

l

!
!

t

I

'_ -_ E_"

I
_.. _ ,_ SAMPLE

!

I

!
I

!
_" _m SAMPLE

,.d._

Ftgure 4-4. - Dielectric properties measurement.

4-13

1975008236-192



Figure 4-5. - Antenna rotating fixture (simplified).
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S.0 INDEX TO DIGITIZED TRAVERSES

Following is an index to all traverses recorded and

digitized as discussed in Sections 4.1 and 4.2. The first

column gives the run number assigned to each traverse and

included on the digitized recording at the locations

specified in the fourth paragraph of Section 4.2.

The second column gives the file number of each run

on both the original digitized tapes (denoted SEPM 1 through

SEPM 8). The series of numbers is read "original digital tape

number/file number." The third column gives each run's loca-

tion on the original FM magnetic tapes. Further to the

right is given general information about each run. R isO

the starting range.

Thus for example the entry:

"116 3/27 9-012"

means that Run 116 was recorded beginning at position 012

on FM tape number 9; when digitized it was recorded as the

27th file on tape SEPM 3.

Runs marked with an asterisk (*) were digitized twice

due to a defect in the original digitization or to some

difficulty in plotting a particular run thought possibly

to be related to a defect in digitization. If any difficulty

is experienced in utilizing the digital recording of a run

marked with an asterisk, the supplemental index at the end of

: the main index should be consulted for the location of a

duplicate digitization. Should the difficulty remain the

defect is probably in the original FM recording.

_" 5-1
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Both the original FM tapes and a master digital tape are

on file with the Johnson Space Center Records Management Office

under the classification: Apollo 17 Surface Electrical

Properties Experiment (S-204) Simulation Model.

The master digital tape contains a condensed record of

the original digital tapes. On this tape the 556 digitized

traverses are ordered consecutively by run number (for dupli-

cate digitizations the last digitization only is used) with

one traverse/record and 10 records/file, e.g. run number 15

becomes the third record of the second file _nd run 348 the

eighth record of the thirty-fifth file. Each record (run)

contains 300 8-character words (format: xxx.xxxx) giving the

power-level in db from 0 - 30 wl range in .I wl increments.

The range corresponding to each word is to be inferred from

that word's position. For example, a run for which the power-

A level was recorded from .5 to 27 wl occupies words 5 through

270. The power-level is set to zero for ranges not actually

recorded. In each record the 300 data-words are preceded by

the following: four 4-character words giving in order the

run number, file number, number of real data-words, and

position of first real data-word (starting range multiplied

by ten) followed by 16 characters carrying the legend

"Scale Model 1973."

A
5-2
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INDEX TO DIGITIZED TRAVERSES

HORIZONTAL METAL PLATE

Digital
Run Tape FM Tape PI ate

No___:_. Location Location Depth (wl). R_o (wl)

001 i/I 4-010 .5 .5

002 1/2 4-095 1 "

003 1/3 4-174 1.5 "

004 1/4 4-234 2 "

OOS 1/5 4-292 2.5 "

006 I/6 4-345 3 " :

007 1/7 4-395 4 "

008 1/8 4-441 5 "

009 1/9 3-156 6 "

010 1/10 3-222 7 "

011 1/11 1-015 1.25 3.25

012 1/12 1-097 1.22 "

013 1/13 1-168 I. 18 "

014 1/14 1-233 1.15 "

015 1/1S 1-293 1.11 "

016 1/16 1-351 1.08 "

017 1/17 1-404 1.04 "

018 1/18 1-454 1.00 "

019 1/19 I-.502 .97 "

020 1/20 1"547 .93 "

021 1/21 1"591 .90 "

022 1/22 1-633 ,86 "

023 1/23 1-673 . 83 "

024 1/25 2-006 .79 "

5-3
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INDEX TO DIGITIZI!II TRAVliRSES ({:ontinued)

IlORIZONTAL METAL PLATE (Concluded)

Digital
Run Tape FM Tape Plate

No__z.. Location Location Depth (wl) R (wl)

025 1/26 2-089 .76 3.25

026 1/27 2-161 .72 "

027 1/28 2-226 .69 "

028 1/29 2-286 .65 "

02£ 1/30 2-343 .62 "

030 1/31 2-396 .58 "

031 1/32 2-447 .55 "

032 1/33 2-496 .48 "

033 1/34 2-541 .41 "

034 1/35 2-584 .34 "

035 1/36 2-625 .27 "

036 1/37 2-665 .20 "

037* 1/38 3-005 .13 "
|

038* 1/39 3-087 .06 "

I" 5-4
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INDEX TO I)IGI'FIZEI)TRAV|:RSES (Continued)

METAL PLATE -LATERAL SLOPES (R ° = .5 wl)

Digital
Run Tape FM Tape Plate
No__._. Locat ion Location Depth _(wl ) Slope Angle

039 1/40 5-015 6 3.8 °

040 1/41 5-105 " 7.6 °

041 1/42 5-183 4 3.8 °

042 1/43 5-254 4 7.6 °

043 1/44 5-319 2 3.5 °

044 1/45 5- 380 2 7.5 °

045 1/46 5-437 2 1.4 °

046 1/47 5-490 1 1.4 °

047 1/48 5-541 1 3.9*

048* 1/49 5-592 .5 1.4*

5-5
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INDEX TO I)IGITIZED TRAVERSES (Continued)

METAl, PLATE- FORWARD SLOPES {R = ,5 wl)
O

Di g i t a 1
Run Tape FM Tape Plate
No. Location Location l)_epth (wl) Inclination

049 1/50 5-641 I.04 2"

OSO L/I 1-025 1 l°

051 2/2 1-111 " 0 °

052* 2/3 1-184 " -I°

053 2/4 1-247 " -3 °

054 2/5 I-309 " -5°

055 2/6 1-362 " -7°

OSO 2/7 1-411 " -9°

057" 2/8 II-014 2 3°

058 2/9 II-103 " I°

059 2/10 II -183 " 0°

060 2/11 II-253 " -1 °

061' 2/12 I 1-318 " - 3°

062 2/13 II-379 " -S °

063 2/14 I I -436 " -7 °

004 2/15 II-489 " -9°

065 2/16 III'007 4 7 °

066 2/17 III'098 " S °

067 2/18 III'176 " 3 °

068 2/19 III-247 " 1 °

069 2/20 III-311 " 0 ° :

070 2/21 III'371 " -I °

071 2/22 III-428 " -3 °

072 2/23 III-481 " -5 °

5-6 ,
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INDEX TO DIGITIZED TRAVERSES (Continued)

METALPLATE - FORWARDSLOPES (R° = .5 wl) (Concluded)

Digital
Run Tape FM Ta_e Plate
No. Location Location Depth (wl) Inclination

_"3 a 2/24 IV-O08 6 9 °

07_ 2/25 IV-095 " 7 °

075 2/26 IV-168 " 5 °

076 2/27 IV-234 " 3*

077 2/28 IV-293 " 1 °

078 2/29 IV-348 " 0*

079 2/30 IV-399 " -1"

080 2/31 IV-534 " -2*

A

5-7
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INDEX 'ro DIGITIZED TRAVERSES (Continued)

HORIZONTAL DIELECTRIC SLAB

Digital
Run Tape FM Tape Plate

No..._:_. Location Location Depth (wl) R_o_

081 2/32 6-009 6 .5

082 2/33 6-098 5 "

083 2/34 6-177 4 "

084 2/35 6-248 3 "

085 2/36 6-314 2.5 "

086* 2/37 6-376 2 "

087 2/38 6-432 1.5 "

088 2/39 6-485 1 "

089 2/40 6-536 .5 "

090 2/41 6-628 0 "

091 3/1 7-012 1.5 3.25

092 3/2 7-092 1.43 "

093 3/3 7-164 1.36 "

094 3/4 7"230 1.29 "

095 3/5 7"290 1.22 "

096 3/6 7"346 1.16 "

097 3/7 7"399 1.09 "

098 3/8 7-450 1.00 "

099 3/10 7-498 .93 "

100 3/11 7-544 .86 "

101 3/12 7-$88 .79 "

102 3/13 7-631 .76 "

103 5/14 8-008 .72 "

104 t 3/15 8-C88 .696 "

105 3/1b 8-161 .66 "

5-8
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INDEX TO DIGITIZED TRAVERSES (Continued)

HORIZONTAL DIELECTRIC SLAB (Concluded)

Digital
Run Tape FM Tape Plate
No. Location Location Depth (w/I) R (,_1)

106" 3/17 8-227 .59 3.25

107 3/18 8-287 .50 "

108 3/19 8-344 .43 "

109 3/20 8-398 .36 "

110" 3/21 8-448 .29 "

111" 3/22 8-496 .22 "

112" 3/23 8-542 .14 "

113 3/24 8-586 .07 "

114 3/25 8-628 .035 "

115 3/26 6-586 0 "

f

0
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INDEX TO I)IGITIZED TRAVliRSES (Continued)

DIELECTRIC SLAB - FORWARI) SLOPES (R -- .5 wl)
o

Digital
Run Tape FM Tape Plate
No. Location LocatLon Depth (wl) lnclination

110 3/27 9-012 1 ! o

117 3/28 9-101 " 0 °

118 3/29 9-179 " -1 °

119 3/30 9-250 " -3 °

120 3/31 9-314 " "S '_

121 3/32 9-375 " -7 °

122 3/33 9-432 " -9 °

123 3/34 I0-006 2 -7 °

124 3/35 10"096 " - 5°

12S 3/36 I0" 1 75 " - 3 °

126 3/37 10- 247 " " 1 o

127 3/38 10" 312 " 0 °

128 3/39 10-373 " 5 °

129 3/40 I0-431 " 3 ('

130 3/41 11-009 4 7 °

131 3/42 11-099 " S °

132 3/43 11-177 " 3 °

133 3/44 11-248 " 1 °

134 3/45 11-314 " 0 °

135 3/46 11-374 " -3 °

136 3/47 11-430 " -3 °

137 3148 12"099 6 0 °

138 3/49 12"008 " i*

5"10
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INDEX TO DIGITIZED TRAVERSES (Continued)

DIELECTRIC SLAB - FORNARD SLOPES (R ° • .5 wl) (Concluded)

Digital
Run Tape FM Tape Plate
Nc. Location Location Depth (wl) Inclination

139 3/S0 12-179 6 3 °

140 3/51 12-250 " S °

141 3/52 12-315 " 7 °

142 3/$3 12-376 " 9 °

t
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INDEX TO DIGITIZFD TRAVERSES {Cortinut'd)

CRATER OVER DIIiI, ECTRIC SI,AB (R ° -- 3.25 wl)

Digital Slab Crater Crater
Run Tape FM Tape Depth Diameter R:mge
No. Location Location _ (wl) (wl)

143 _/54 13-018 1 2.5 18

144 5/55 13-096 1 " "
eo

(off-set .25 wl from traverse-

1 ine)

145 3/56 13-164 1 (re fercnct, for

runs 143-147)

146 3/57 13-228 l ?..5 11

147 5/58 13-282 1 " "

(off-set .25 wl from traverse-

1 ine)

A 148 3/59 13- 334 .5 2.5 I l

149 3]60 13-382 " (reference for

run 148)

150 3/61 14-017 3 (3.5) 22

(one-quarter crater, off-set

I wI)

1S1 1/62 14-099 3 (re fe renct, for

run 1501

1975008236-206
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INDEX TO DIGITIZED TRAVERSES (Continued)

CREVASSES OVER DIELECTRIC SLAB

Digital Slab Crevasse Crevasse
Run Tape FM Tape Depth Dimensions Range Ro
No. Location Location (wl) (wl) (wl) (w])

152 3/63 15-017 4 .3x3x3 5 .5

153 3/64 15-104 " " 15 "

154 3/65 15-178 " (reference for runs 152-158)

155 3/66 15-245 " .15xl. Sxl.5 5 "

156 3/67 15-305 " " 15 "

157 3/68 15-361 " .lx.75x.75 5 "

158 3/69 15-412 " " 15 "

159" 3/70 16-013 1 " 15 3.25

160 3/71 16-093 " " 5 "

161 3/72 16-161 " (reference for runs 159-16e)

r:

2

7

t

j

1975008236-207



1
F

I

INDEX TO DIGITIZED TRAVERSES (Continued)

SPHERES OVER DIELECTRIC SLAB (R = .5 wl)
G

(Slab Depth 6 wl. Spheres Centered At 4 wl Depth.)

Digital Sphere Sphere
Run Tape FM Tape Diameter Sphere Range
No. Location Location (wl) Material _wl)

m

162 3/73 17-189 (reference for runs 163-174}

163 3/76 17-018 1 metal S

164 3/77 17-109 1 K' = 6 "

165 3/78 17-258 2 metal "

166 3/79 17-324 " K' = 6 "

167 3/80 17-386 . S metal "

168 3/81 17-444 " K' = 6 "

169 3/82 17-502 1 K'= 6 0

-'- 170* 3/83 17-553 " " 5

171 3/84 17-601 " " 10

172 3/85 17-648 " " 15

: 173 3/86 18-006 " " 20

174 3/87 18-095 " " 25

i

2,
,u
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INDEX TO DIGITIZED TRAVERSES (Continued) "

SPHERES ON DIELECTRIC SI,AB (R = .S wl)o

(Slab Depth 2 wl.)

Digital Sphere Sphere
Run Tape FM Tape Diameter Sphere Range
No. Location Location .....(wl) Material (wl)

175 3/88 18-539 (reference for runs 176-184)

176 3/89 18-1 78 1 K' = 6 0

177 3/90 18-249 " " 5

178 3/91 18-315 " " 10

179 3/92 18-375 " " 15

180 3/93 18-432 " " 20

181 3/94 18-487 " " 25

182 3/95 18-590 " " S

(off-set 1 wl from traverse-line)

183 3/96 18-639 " " 10

(off-set 1 wl from traverse-line)

184* 3/97 18-b82 " " 10 _

(off.set 1.5 wl from traverse-line) :

¢

_' S-15

L,

i
C
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I- INDEX TO DIGITIZED TRAVERSES (Continued)

SIMULATED CREVASSE IN DIELIiCTRIC SI,AB {R = .5 w])

Crevasse

, Digital Slab Dimensions Crevasse
Run Tape FM Tape Depth (wl) Range
No. Location Location (wl) wxhxl {wl)

185 4/1 19-017 2 .5×.5×4 5

186 4/2 19-105 " .25x. Sx4 5

187 4/3 19-178 " " IS

188 4/4 19-242 " .5×.5×4 15

189 4/5 19-307 " (reference for

runs 185-189)

190 4/6 19-361 1 .25x. Sx4 5

191 4/7 19-411 " " 15

192 4/8 19-457 " (reference for

runs 190-191)

)_" 5- 16
i
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INDEX TO DIGITIZED TRAVERSES (Continued)

BLOCKS ON DIELECTRIC SLAB (R ° = .5 wlJ

(Thirteen Blocks Scattered Inside 15 wl Range)

Digital
Run TaDe FM Tape
No. Location Location Slab l}epth (wl)

193 4/9 20-024 1

194 4/10 20-107 2

195 4/11 20-177 3

196 4/12 20-240 4

197 4/13 20-297 5

198 4/14 20-353 6

5-17
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INDEX TO DIGITIZED TRAVERSES (Continued)

HALF-SPACE AT VARIOUS LOSS-TANGENTS

Digital
Run Tape FM Tape Loss-

No. Location Location Tangent Ro_W_._

199 4/15 A-006 .002 .5 (receiver reversed) :

200 4/16 D-442 .002 "

201 4/18 A-097 .012 " (odometer

artificial)

202 4/19 A-172 .025 1.25

203 4/20 A-238 .042 "

204 4/21 A-298 .073 "

205 4/22 A-353 .142 "

5-18!
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INDEX TO DIGITIZED TRAVERSES (Continued) 1

HORIZONTAL METAL PLATE AT VARIOUS LOSS-TAN(;ENT5

Digital Plate
Run Tape FM Tape Depth Loss-

No. Location Location _ Tangent R_o_

206 4/23 M-011 .5 .002 .5

207 4/24 M-103 1 " "

208 4/25 M-181 1.5 ....

209 4/26 M-251 2 " "

210 4/27 M-316 2.5 " "

211 4/28 M-376 3 ....

212 4/29 M-433 4 " "

213 4/50 M-486 5 " "

214 4/31 M-536 0 " "

215 4/32 M-586 7 " "

216 4/33 N-011 1 .012 " (odometer

artificial)

217 4/34 N-103 2 ' .....

218 4/35 N-185 3 " " "

219 4/36 N-257 4 " " "

220 4/37 N-322 5 " " "

221 4/38 N-382 6 " " "

222 4/39 N-440 7 " " "

223 5/1 S-011 1 .025 1.25

224 5/2 S-100 2 " "

225 5/3 S-177 3 " "

226 5/4 S-247 ' " "

227 5/5 S-311 5 " "

228 5/6 S-371 6 " "

229 5/8 S-427 7 " "

!

250 5/9 Y-OIO .5 .042 1.25

231 5/10 Y-097 1 " "

5-19
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INDEX TO DIGITIZED TRAVERSES (Continued)

HORIZONTAL METAL PLATE AT VARIOUS LOSS-TAN[;I!NTS (Concluded)

Digital Plate
Run Tape FM Tape Depth Loss-

No__u. Location Location (w13 Tangent R (wl_

232 5/11 Y-173 1.5 .042 1.25

233 5/].2 Y-243 2 " "

2_4 5/13 Y-307 2.5 " "

235 5/14 Y-366 3 " "

236 5/15 Y-423 4 " "

237 5/16 Y-475 5 " "

238 5/17 Y-525 6 " "

239* 5/18 Y-574 7 " "

240 5/19 Z-008 .5 .n73 1.25

241 5/20 Z-095 1 " "

242 5/21 Z-174 1.5 " "

243 5/22 Z-244 2 " "

244 5/23 Z-310 2.5 " "

245 5/24 Z-370 3 " "

246* 5/25 Z-426 4 " "

247* 5/26 Z-480 5 " "

248* 5/27 2-532 6 " "

249 5/28 Z-584 7 " "

250 5/29 CC-009 .5 .142 1.25

251 5/30 CC-097 1 " "

252 5/31 CC-175 1.5 " "

253 5/32 CC-246 2 " "

254 5/33 CC-311 2.5 " "

255 5/34 CC-371 3 " "

256 5/35 CC-428 4 " "

5-20
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INDEX TO DIGITIZED TRAVERSES (Continued)

SINGLE CREVASSES IN HALF-SPACE (R ° = .5 wl)

(Crevasse Range 5 wi. Loss-Tangent .002.)

Crevasse
Digital Dimensions

Run Tape FM Tape (wl) Crevasse Field
No. Location Location wxlxh Orientation Component

257 S/36 C-006 .Z_×5 0 ° E-Ph_

258 5/37 C-102 " 0 ° E-Rho

259 5/38 C-179 " 45 ° E-Rho

260 5/39 C-243 " 45 ° l!-Phi

261 5/40 C-304 " 90 ° E-Phi

262 5/41 C-358 " 90 ° E-Rho

263 5/42 D-008 .ISxl.Sxl. S 0 ° E-Phi

,,-, 264* 5/43 D-097 " 0 ° ,:-Rho

265 5/44 D-271 " 45 ° E-Phi

266 5145 D-237 " 45 ° E-Rho

267 5/46 D-296 " 90 ° E-Phi
¢

268 5/47 D-348 " 90" E-Rho

269 5/48 D-397 (reference for runs 257-275,

E-Rho component)

199 4/1S A-006 (reference for run 257)

200 4/16 D-442 (reference for runs 258-275,

E-Phi component)

• 5-21
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= "" INDEX TO DIGITIZED TRAVERSES (Continued)

MULTIPLE CREVASSES IN HALF-SPACE (R ° = .5 wl)

(Set of Six Crevasses Centered at 9 wl Range,

Loss-Tangent = .002)

Crevasse
Digital Dimensions

Run Tape FM Tape (wl) Crewtsse Field
No, Location Loc_tion wxlxh Orient a':ioa Component

270 5/49 E-()IO .15xl.5×1.5 0 ° E-Phi

271 5/50 E'098 " 0 ° E-Rho

272 S/S1 E-171 " 90 ° E-Rho

273 5/52 E-238 " 90 ° I'-Phi

274 5/53 E-296 " 45 ° E-Phi

275 5/54 E-3SO " 45 ° E-Rho

A

5-22
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INDEX TO DIGITIZED TRAVERSES (Continued)

SINGLE CREVASSE OVER METAL PI,ATE

(Plate Depth 4 wl. Crevasse Range 5 k)

Crevasse
Dimensions

Run (wl) Crevasse Fie I d

No. Location Location wxlxh Orientation Component _o (wl)

276 5/$5 1-011 .3×3x3 0 ° l!-Phi .5

277 5/56 1-097 " 0 ° E-Rho "

278 5/57 1-172 " 45 ° I!-Rho "

279 3/58 1-236 " 45 ° l:-i)hi "

280 5/59 1-294 " 90 ° l!-Phi "

281 5/60 1-349 " 90 ° E-Rho "

282* 8/18 H-011 .15xl. Sxl.5 0 ° E-Phi "

283 5/62 H-098 " 0 ° E-Rho "

284 5/63 !;-172 " 45 ° l!-Rho "

285 5/64 H-239 " 45 ° E-Phi "

286 5/65 H-302 " 90 ° E-Phi "

287 S/66 H-356 " 90 ° E-Rho "

288 $/67 V-O14 " 0° E-Phi 1.2S

289 5/68 V-lOS " 45 _ E-Phi "

290 5/69 V-184 " 90 ° E-Phi "

291 5/70 V-256 .lx.7Sx.TS 0 ° E'Phi "

292* 5/71 V'32! " 4S ° E-Phi "

293 S/72 V-383 " 90 = E-Phi "

5-23
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INDEX TO DIGITIZED TRAVERSES (Continued)

MULTIPLE CREVASSES OVER METAL PLATF,

[Plate Depth 4 wl. Set of Six (flee for runs 305-308)

Crevasses Centered at 9 wl Range,]

Crevasse

Dig ira1 Dimens ions RoRun Tape FM Tape (wl) Crevasse Field Lo_s-
No___. Location Location wxlxh Orientation Component _ 'rankent

294* 5/73 G-010 .15x1.Sx1.5 0 ° E-Phi .5 .002

295 5/74 G-099 " 0 ° E-Rho " "

296 5/_S G-174 " 45 ° E-Rho ....

297 S/76 G- 239 ,, 45 ° E- Phi ....

298 5/77 G- 298 ,' 90 ° E- Phi " "

299 5/78 G"353 " 90 o E"Rho " "

300 5/79 G-403 (reference for runs 276-299, E-Rho)

212 4/29 M-433 (reference for runs 276-299, l!-Phi)

301 5/80 U-013 .15xl. Sx1.5 0 ° E-Phi 1.25 .025

302 5/81 U- 107 " 90" E- Ph i " "

303 5/82 U-189 " O* E-Phi " .042

304 5/83 U-258 " 90 ° E-Phi " "

305 5/84 U-326 .lx.75x.75 0" E-Phi " "

306 5/85 U-387 " 90 ° E-Phi " "

307 5/86 U-448 " 0° E-Phi " .073

308 5/87 U o501 " 90 ° E- Ph i " "

5-24
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iNDEX TO DIGITIZED TRAV_-;_;ES (Continued)

JUNEAU Cl_2.'rE':

(II-14 m Diameter x .S.'_.vDeep. Range 263 m.

',_,ff...,::t. LOm.)

Dig i tal Frequency RoRun Tape FM Tape Modeled Loss
No_..:. Location Location (MHz) ,. Tangent,

309 5/88 U-554 (32 Ml[z crater .073 1.25

at 16 Mltz range

over metal plate

4 wl deep)

310 5/89 O-010 Half-space 32 .012 .5

311 5/90 O-101 ,, 32 .025 1.25

312 5/91 0-180 ,, 16 .025 1.25

313 5/92 0-254 ,, 16 .042 1.25

314 5/93 0-320 ,, 32 .042 L.25

{
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INDEX TO DIGITIZED TRAVERSES (Continued)

30° MOUNTAIN-SIDE (R0 " 1.25 wl)
(Transmitter 175 ft from Baseline)

Digital Frequency
Run .Tape FM Tape Modeled Traverse Loss-
90. Location Location _MHz) Direction Tangent

515 5/95 W-011 8 away .042

316 5/96 W-II2 8 45° .042

317 5/97 W-182 8 along .042

318 5/98 W-252 8 away .073

319 5/99 W-310 4 away .073

320 5/100 W-364 8 45 ° .073

321 5/101 W-416 4 45° .073

322 5/102 W-467 8 along .073

323 5/103 W-S14 4 along .073

324 5/104 DD-OI1 4 away .142

325 5/105 DD-093 2 away .t42

326* 5/106 DD'166 4 45 ° .142

327 5/107 DD'Z31 2 45° .142

328 5/108 DD-291 4 along .142

329 5/109 DD-348 Z along .142

5-26
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INDEX TO DIGITIZED TRAVERSES (Continued)

STEP (Ro - 1.25 wl)
(45 ° Ramp Connecting Horizontal Plates 200 and 490 ft deep)

Digital Frequency
Run Tape FM Tape Modeled TX RX Loss-
No___. Location Location ,(MHz) Position Position Tangent

330 5/II0 X-012 8 bottom away .042

331 5/III X-092 " top away "

332 5/i12 X-165 " bottom along "

333 5/I13 X-232 " bottom toward "

334 5/i14 X-292 ,' top toward "

335 5/115 X-352 (reference for 8 _lz)

336* 6/I T-014 4 bottom away .073

337 5/2 T-094 " top away ',

338 6/3 T-166 " bottom along ,,

339 6/4 T-232 " bottom toward "

340 6/5 T-293 " top toward "

341 6/6 T-350 (reference for 4 _Iz)

342 6/7 P-012 2 bottom away .142

343 6/8 P-094 " top away "
;r

344 6/9 P-166 " bottom along "
f

345 6/10 P-232 " bottom toward "

346 6/Ii P-293 " top toward ,' i

347 6/12 P-351 (reference for 2 Mllz)

5-27

\

1975008236-221



INDEX TO DIGITIZED TRAVERSES (Continued)

RIDGE (R o = 1.25 wl)
(45 ° , 20b ft High Ridge on 490 ft Deep Plate)

Digital Frequency
Run Tape FM Tape Modeled TX RX Loss-
No. Location Location (MH.z_ . Position Position Tangent

348 6/13 X-406 8 bottom away .042

349 6114 X-456 8 bottom toward .042

3S0 6/15 X-SOS 8 bottom along .042

351 6/17 T-404 4 bottom away .073

352 6/18 T-454 4 bottom toward .073

353 6/19 T-S02 4 bottom along .073

354 6/20 P-406 2 bottom away .142

355 6/21 P-457 2 bottom toward .142

356 6/22 P-S06 2 bottom along .142

A

, 5-28
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INDEX TO DIGITIZED TRAVERSES (Concluded)

SUPPLEMENTAL INDEX TO DUPLICATED DIGITIZATIONS

Indexed Duplicate
Run No. Digitization Digitization

037 1/38 7/1

038 1/39 811

048 1/49 7/2

052 2/3 6/23

057 2/8 6/24

061 2/12 6/25

073 2/24 8/2

086 2/37 8/3

104 3/15 8/4

106 3/17 8/5

110 3/21 8/6
A

111 3/22 8/7

112 3/23 8/8

159 3/70 8/9

170 3/83 8/10

184 3/97 8/11

239 5/18 8112

246 5/25 8/13

247 5/26 8/14

248 5/27 8/15

264 5/43 7/3

282 8/18 5/61

292 5/71 7/4

294 5/73 8/16

326 5/106 8/17

336 6/1 7/5

A
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DAVID W, STRANGVCAy

Geophysica Branch, NAgA-,$funned Spacecraft Caster. Ho_ffon, Tax. 27058, U.S.A.

L. BANNISTER and R. BAKER

Labora¢ory _r SpaceExpcrimanT#.Center/orSpaceP.ewarrk,MaT; Cambridge,Mass.02139,U.5.A.

D, CUBLEY

F,_neevim£ eawl De_vlopment Directorate. NASA.Maamed Spacecraft Ccntee.
Houalmt. Tax. ;;05#. U.S.A,

G. LATORRACA

DepL of Enrlk and Pl,'nelac¥ Sciences. ,_4IT. Cambr_dtto Ma, s. 021.¢9. U.S.A.

end

R. WATTS

Dept. of Physics. Unit¢rsey o[ Tommo, ToFonto. Canada, and Lu_r Science lnsfituw,
ltouston. Tax. 77058° U.S.A.

AMtract. The surfzu;e¢l_trmal propcrtK-t expuimcnt is pre.semly planned ,._orApol!o | ? It u_es two
orthoIonal, electric dipok a_tenna_ laid on the surface, each 70 m toni (tip-to-tipL to tran_mtt at
frequenciesof !. 2.I, 4, 8. t, t 6 and _ I MHZ, The sitlna}sart received by _hrcemutually perpendicular
co,is mounted on the Junar Ro_,cr wh_h traverses away from the transmitter Information from the

Rover navigation s_tem ts also Rcorded to that i_ _;11 be po_,tbte {o construct profiles at each
frequency as I fan,ion of distance from the transmtHcr and for etch lean,mister and each recetving
coil. Interferences between v,a_es propalatin$._ust above a,ndjust below the surface Wl{lliv© a rn_,_ur¢
of the dicMctric constant and loss tangent of the upper layer, Reflections fror[t either layers or lateral
inhomogeneities usa also bc detoured and studied.

One verdem of the system has been constructed snd tested on the AlMlbas¢4t glacier. Analysts of

the rtsuRs shows that at 32 M ltz. I_ MHz and g M Hz _catterlnl dominates the results sugIe_tml that
s¢lttetmg bodtes of 35 m or les_ _:tst2e art numerous. At 4 MHt. the ic-_was found to hJv¢ a d_¢lectr_c
constant of about 3.) arid a lOSStangent ofO, IO, both values typical for ice, The _coth Of the _ was
found to be_ronnd 263 m. a value typical for thi_ glacier'. At 2 MH_ and } MHz the Io_,: am much

- hilherbut |hed)eMctdctmns_antisStdl clearlydetermined as 3,).

I, httrml_tiots

In this lmpar we descr_oe the general nature of the Surface Electrical Pro_nies
experimentnowplannedfor theApollo ! 7mission,This experimenthasbeendesigned
specifically to operate in the lunarenvironment where there is believed to be essent;ally
no moisture present.El_tromagnetic experimentson the Earth havea long historyint

the exploration for minerals, bt,t because of the presence of moisture in the pore

spaces in rocks resistivities greater than about 5 × I0_ D-m are rare. The net result is
that almost all work on the Eartl_ha_ concen|rated cm using audio frequencies to get
significant depths or"l_netrado.. Fhe response parameter For electromagnetic waves

is' givenas (_p_o'+io/.,_) "_ where

•' \
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.I .r,_ |,_F _. j,. "f I I } ¢ , R|/.'AI. PK_PTl_ | II'_ I • ; _ r2 ._' '_i

c -diclccfric c_.,,a_.lnt-- far ,!. :_=.

I_" magnetic pcrmeabilit._ ;.c_rie_'t_l.

oJ- rotational frequency (= 2n.J.- freque ncy in Hz)
a-conductivity mhos/m.

For most Earth applications ala_tl_CO _ :so tha! the prob!e_ _'come; cr't:_el _ (me of

diffusion and no propagation la_es place, la cnviron_en',s wl_erc the _,.,_s!iw_; :.s_cry
high, however, _po_a ), _/J_oand :he prob.tem become,; one of propagatl,m whh all the

attendant phenomena of diffractaon, interfe_nce, etc. Early attempts to pc.nelrate tee
Earth at radio frequencies met with httle success simply because lhe penetration

depth (given by v_(2/a/_o) for the diffusive case and (3 × i3')/(7r/_' K tan 6_for the pro-
pagation case where K--- relativc dielectric constant and tan ,'i= loss tangent) was too

small. In recent ._ears, experiments on glaciers have _hown th;_t tt is _ss,ble to get
radio-frequency reflections from very great depths (Rinker and Mock, 1967; Harrisen,
1970) and radar has been used ;o map the outline of .salt domes (!.Tnterberger e. at.,

1970; Holster et al., 1970). The reason for success in penetrating sigmficant distances
in th,_ two media is that they both have very high resistivities, on the order of !0" _ l'/-m
or more. Lunar soils and rocks have been shown to have very high values of

resistivity and accordingly it would appear that thc lunar environmc_,t is par'.icularly
suited to depth sour,cling using radio frequencies (Strangway, 1969; St. An',an_ and
Strangway, 1970; Katsube and Collet, 1971; Chung et al., 1971).

The properties of typical dicl_trics have been reviewed by many workers but for

those of interest to us, the dielectric constant ranges from about 7, for powders to
about 10 for solids. Equally important _s the general phenomenon that the los: _angent
is nearly independrnt of frequency provided then: are no relaxations. Fhis was indeed

found to be the case for the lunar samples (Katsube and Collet, 1971; ('hung, 1972) so
that the lunar materials behave precisely like those earth rocks _,htch have no hydrous
miner_als (St. Amant and Strangway. 1970). The loss tangent may be converted to

variety of equivalent parameters. Since _t is a measure of the tmaginary part of
the dielectric constant it is also a measure of the real part (,f the conductwity

(tan _-, Ko c%0.). If there i_afinite conductivity, however, tl_s can be conw'rted to an
¢qtnvalent penetration Jepth (x/(2/a,,_ _c_)). For a frequency-independent loss tang-
ent th_s relation is illustrated m Figure !. Typically, the lunar rocks have _alues of

w/(K tan _)of about 0.05 to about 0.2 and the soil_ have values less by a factor of about
4 or 5 (see Table 1). At ! MHz the penetration depth in lunar materials i_ typically a
few kilometers while at 30 Milz R is typically a few hundred meters.

The exlg'dmental resultsto be discussed in this paper were measured on glaciers
which is almost the only environment on Earth in which a suitable analogue experiment
can be conducted. The analogy is not perfe_, since ice has a relaxation loss that occurs

in the audio frequency part of t!:e spectrum. The tail of this relaxation spectrum stdi
aff_nctst he loss tangent in the range of frequencies of _mportance m the Sm face Electri-
cal Prope_tiesexperiment w_'hthe re._u',trt,_* lb.' !os_ tangent dex'reas_sfrcm l Mltz to
32 M_*:¢! va_. I()aS_in:,u_hawaythat',::c _rodu':.' fl _im,_sapproxm_aleI_c.qt_gt_nl

F_I,"r'ec'sc ,.,_,_cis '.cmt'er_tur," d,:_' ',',_ .,ut lyp_,:dly _th _',v,dues el a,t,:_,,t 11.2t_

t
: \
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I0 _ 10 4 10' I0 i !0 t° 10_

FIUEOU|NCY (Hsl

FiB. !. Attenuation diWmce as a function of I_lucney from lunar samples and from

remote lunar sensin|.

Straight lines show theoretical values for _pical dielectrics which ha_e a lots tan_nt whk:h is

independent of frequency.

(J) Weaver (1965) - thermal emJ-.sioft laid radar otbse.rva1|ons; (2) Tyler (19_q) - bisfatlc radar:

(]) Chang tl eL (1971) - lunar ijneous sample 12002; (4) Colletl and Kattuhe (1971) _ lunar bre_Ja

sample 10065: ($) Colktt and V"sube (1971) - h:t_ir titles sample 10084, _6) Gold et ul. (1971) -
lunar fines.

O.& if'thefrequency,j, isgivenin M Hz. Thiseffectis illustratedschematicallyin Figure
I : the attenuationdepthin ice is essentiallyfrequency.independentwith a _alueo1"a
few hundredmeters,ice therefore,is not an optimum analoguefor what weexpectin
the lunar case,but at ]eastit is fairly transparentover part of'the frequencyrange.

z, ]_mdmmC_

The conceptof'the SJEPexperimentis illustratedin Figure 2, An electricdipole trans.
misteris ]aid on the surfaceand transmitsat six frequenciesfrom I MHz to 32 MHz.
EnerW is propapted in three ways:(a) above the surfacewith the speedof"light in
vacuum, (b) below the surface along the interface with the velocity of light in the
medium and (c) by reflection from *ayering or other inhomosencities in the surface.

These various waves interfere with each other as a function of position ,,long ,h_.
surface. Intert'erence between the surface and subsurface wave gives a measure c, re,.

a,
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2oI "rHl[ 5UItFALT tLt CI1UC.M. PltOg_tTll_ _XPUU_NT

TABLEI
!)i_'¢lJ_ propcrta_s of ILmJur_plgs ,,P,C_of ic_

goc_ Soil

(-,*,o'(3

D_cctric ! MHz 8.8 7.3 8.3 7.8 3.11 3.0 3.2

cu:,sumt IOMEIz 9.3 7.3 8.3 |.l 3.8 3.0 3.2

30MHz ....... 3.2
l,_s ! MHz 0.075 0.063 0O51 0.O_ 0.0175 0.025 0.3
t_tXlleOt10Ml,lz 0.021 0,019 0.0151 0.O!14 0.0019 0.0053 0.0]

30 MEIz ...... O.O1

_, IICIM1NI COilS /
/" ./ ./ N.-Vt,,.C_co*u,o_tm

/ _'* ,4 _" i_ COMPONENT ALONG
llAYEUE //. /__,,..... TAcK/ s--_gW ....'-'-_..... ..I_.._ Ng.co,_,oqt_r

/" - / "umAci-ff_i'" _ m_N_,CUtA* _o
-..........., - - llAyll_

_'_ IUISUIFACI[ WAVE -'_ l_t

diahx_ric¢omtantazxax_n_ to tim formulas- (l+Ag)awhmredKistl_inte_ca_mce
frequent. T'_ ra_ of dmayo( th__ livesa nmuut_of theiel tanlleut.
11mmismeumed m tbeItevermt mamma da,add mnqe_ asafumieaef
nmlem thattheinterfmwef_tue_y canIx mmsmud,In addition,n_am_ from
sulmn_ feata_ eta bedetected u they iam.f_ewithtimotherwren. Transmit-
,teabdem_ trima_airefeme_ _ita_maM tbe_dv_ _ et
Ltm__ toot_to_ t_ _ _tmn_tkoftlum_ _

D¢tm'kdde_-'riptk_sef',.heezpcrimm_ agetMinmdfor futwg_ m
w_a_iv_o_# a b6et'dacnp_on_ theIwd_,, _ mtimugtioo.
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(,F" .'_IW_Dt,WO" , F{ A! .%_."

Thetransmi,ter fqpoweru_l by _,..arc_Hz._ ,,' ',:an, mh_ ,._lm:r,,ia'tv _1 _ ?. I _ _.!.

10 and 32.1 Ml-lz. each trar..qm_sion at e_.' *rcquca_> from onc antcn,_a I.....

101.25 ms. The pair of orthoronal dipoles, each of which is 70 m long (tip-to-rip), arC

powered alterna_ly. Tb¢_ dipoles axe ha!f-_ _vc dipole, at 2. l, 4, 8. l. 16 and 32. I ._,-i 7.

A pair of wires is used for che experiment and a set of Irtpe and supres._r_ art built

into the wires such that the transmitter'sees" • h_Jf-wave resonant dipole •t eacL of the

frequenciat. At I MHz the antenna is not • half-wave dipole but loading :s u_¢l to

compenmte this. Precise matching of the antenna impedance whh that of the Moon is

ailficult becau_ of our igworance of the exact value of the dieiect_ constant but we

have d{=ignedthe antenna for a value of 3.3 whJci" is consistent w_th the bi_tat,c radar

results of Howard and Tyler (1972). On the ice, the antenna can b¢ adjusted to make t he

antenna optimum at each frequency. The power radiated ht 3.75 W at I MHz and

2.0 W _ the other frequencies. The transmiuion sequence is shown in Figure 3 and

provides about 10 sam_ per wavekn$th per component _ 2.1, 4, 8.1, 16 and 32.1

MHz and 20 umpl_ pet wavelength pet component at I MHz at • vehicle speed of
8 kmh='.

I

- _' %_ ,= 8.40 IdC , .... .,.{
I %

t %

o

/ 'L,

I_ '_,,W ! |. _il Tl{_tSam_'WmO d_dI'IHIWN&
L ¢' I ¢ l•l Pl # IZ{ IliCDVl_O MNTI_MM

,., .ore(, ,,,,_,,o
fN |&CH PSAMII

Fig. 3. Fornlt: two fnunm enlldcodOFP are usedto n_0nito¢the bedqp,ou_d c-ir,a_x_noi_ at
all f_umci_ and to mmsm the intmud no_e. The frame marked_cal. is _,_,d fo_ synchrom_,ng

tnms_r.it_ and m mid to mmcd the in_'nal teml_nttuee _ the mmiver.

l 'l'nemzivis8 -,_-,-- o0mim o( due oahoSoul co_ wbkhm mmm_ on dz
I[Im_, Tke mml_0a of eadt rail is at•mired for 33 me ud in wque_e. The ti_

m _ in ths _ sml m frequmcy-coded by • volt_e controlkd

oeciilmm.Thisoecilistmoperm_ova.thefnsquuscyrm_ of 300to 3000Hz,ax.m.
spondt_ to i d_mamk: raa_ i_ the imtmlamt of -35 dim to - 135 db_ Thit futile

dymmicru_ allow__te field_ _ overt brosd_ nu_
fromthemumnitt_.TheOUtl_ofthevoltage.controlled,_a:iHatm'is recordedo_ a
reoownb_uq3erecorder.Withsiztransmissionfrt,quea_m,twoaltemat_h_m_ing
ms_l th_ rec_v_nj antcnnJ_ we reco_ • totql o('36 _te pieg_ OF infor.
mmioa.

la the hutaf wNem, mviptiou datl will be tecouJed in two didact unt3nJ.Oa esch

\
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wlleel there i._a ! ul_egeog.'ratedevery 0.245 m. _,,e will record e":t _ second 01_N,:hom
t_o segarate _! _1_. t_:r r:Jl:adzu, cy and as a c'.lcck on wh,.,'l ",IH'p:.gc. ! h,,_In" an,,
lhat :he traverse can be reconstructed in increments of ab(_w 0 5 m. "l'he_ san.e v,hcel

puI,,es and "_gyro-stabihzed compass provide the bax'c input to r'_e Rover r,:t,,Jgalhm

computer which displays range, bearing, heading, and dt_tant'e Ir,t_elled. "]'lie boa,m:.,.
and heading are computed in increme,,ts of I and th_ range and dJstance travelled
are computed in increments of 100 meters. We will record the bear,rig every time
i, changes by .+.i "(except in the immedmte v_nity of the LMI and as a redundanl

check we wdl record the range in I00 m increment.,. The range Js computed usinb
the third slowest wheel, _ we will have a separate measure of the wheel slip and

an internal range check at 100 m increments. Finally, since there may be errors that
will accumulate in both the range and bearing measurements we will use the known
stop points to correct the traverse. Since these stops are bkely to be m increments of

one or two kdnmeters, we will have frequent update_ to our traverse map. On the
basis of this information we expect to be able to reconstruct the traverse to an accuracy

of about I"._of the range and to reconstruct range differences over a few hundred
meter_ to about I m or heater.

For the glaciertests,wehaveuseda simpleodometerc_rcmtconnectc,;to oneof the
drive-wheels wh:ch generates s)gnak ever)' 1.5 m. These s)_rmlsare recorded independ-
ently on the tape recorder. These pulses have been used to determine the hori,,ontal
scale so that all thedata dt._us_d ,n this report have been plotted as field strength

versus ran_.

4. lhmeefleld Work

We are reporting elsewhere the theory behind thi_ experiment (Annan, 1972; Cooper,
J972,;Sinha, 1972a.b, c) and luive published a paper on some of the most preliminary
g_acier results, (Rosstter et aL, 1972). We will not, therefore, review all the_ result_ in

the pre_ent paper. Rather we will only summartte a few points which are perlinent to
the data analysis.

The transmitting antennas are crossed dipoles; in the simplest ca_e the traverse5 are

run broadside to one d_pole and off the end of the other. The geometry is shown in

Figure2 The f_lds H, and H_from '_e broad_le antennaareboth max_mum-c.oupled
and can be expeet_ to show the mtUfcycflce petteY_ whkh are the _ of the

experiment. Studiesof theantennapatternsfor thesecomponentsshowthat the power
abovethe su_a_ iscomparableto tb_ powerjust below the surfaceso that sialhtcant
interference between these two waves can be expected. In t_ case of' the He cow.,'v,.
ncnt off the end of the transmitter, however, power is transmit_-.d above the surf'ace

but very little power is transmitted just below the surface. There is little interference, so
this component is not as usefulfor determining the dtelectric constant and loss tangent.

The other components (H, and t1, broadsideand It, endfire) are minimum-coupled
to the respect,_e trart_m_tters. These componentx are consequently useful in looking

for energy scattered by either surface irre_ulariti_ or subsurface inhomogeneitit_.

The rad,at:on pattern of a electric lielOdipole at the interlace between free space and

i \
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a _mJ-inrinitc dielectric m:d,um cone:finsa single Iohc hreadsidc,,:"all.-: re,,),, :-.
twolo_scndfireottb'_af,t:.nnaa_shownhyCoo_..r(I972) Thebro_,d_,, ,_: i_.,,
verseElectric(TE) radn.,tionpattc'rnand the endfinr or Transver_ Ma_.e,:," _' '
radiationpattern are illustratedm Figure4 [or adipoleover ice. ]'he d=r,ole =,_,,!..-.
withthe X'-axi_m Cartt_ian coordmatc._.The a_gle betwcenthc vegetal a,_d0hr_,.. "
of"thelobe is givenby sin,8,=_,/(r.olr.,)whcrc _ois t hcd0clc_,tnc constant()f l'rcc._p.,,,

WFWWESIMAL+
H.E.O.
DIF.LI[CTRICCONSTANT• 3.2

:k :k
"I I Tua_m_i_i' -I I _a'_Mtn_

i

't!i
Z Z

and _: isthe dielectricconstantof"the medium,in the_s_ of icewherethe ratio to -,
is _iven by l/3.2 this an._ is about 34". The enefl_ radiated downwaurdsinto the
mediumduesnot appear at the surfaceunJm thereis a reflectinghorizon at dcptl,.
The presem_eo(a horizontalreflectorat dep4hdcauseseneflD'to appearat the surface
at s diaLMcer:_ 2d tan ,_.For ice the clelptbtoa r_ectur isIpvenasd-O.$ r. In prine_.
pie it is lhercfoceIX--_ble to determineIh_ dielecl_ constantand the It,_mtanlt_nt
from the near.Eeh ,nterfcrtnc_ of the He and H, componentsfrom the broadside
antenna.Reflectionscanbe studiedby the H, and }!, componentsfrom the hruad_ade
antennaand by the H_ component from the endfireantenna.

Most of our work to data has been concentrated on the Athaba_a glacier m we_t,_c_
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Canada (Fisure 5a). It is a weft-studied glacier and is _ w',ca_ble. Previous studies

based on Ipra_ity (Kznastwich, 1%3), msmolot_, and drilling (Paterzor, and Savage,

1963), and electrical sounding (Keller and Fri_hkEht, 1961) have ixen made and a

mp of apl_roxmtc ioe thickness :s shown in |igum Sb. We have reporled on earlier

preliminary results (Rmsit¢_ et al., |972) and in this paper p:strict ourselves to one _t

ofdata taken in the summer of' 1971 with the evaluation model of the flight equipment

which was described in this rqxwt. The profile di,,'mu_,d is shown in Figure 5b and k

mrked by the transmitter at the southern end. The ice thk:kne_q is approx:mtely

. ; ....

, i . cANAO, /_"-_ ( "" I_, ; I ' .

I ',_ ""--._. I ', I '. /i "t
I : ......... ,.... __.,._.._ _ i / .i •

I °'"
• SeedeWIil mIp _'J --

OINIIAL LOCATION MAP

kq_ob. (m)Lora'k_md_4AU_caMack_. (b}S_hn_of_AO_m BI_, ' :
liho_inll the Ioglmoll of thg _ _ i_ thn/elpoel. Cotllolws IiI1_tl_ _ _ z_

ISillll

F_ Sb.
4
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300m. The line wasrun from north to south and then repeatedsouth t_)nollh _,1:,.
identicalresults.

The fieldstrenglhdala for all componentsat 4 MHz are shownin Figure h plol,c,, _-
as a logarithm of the power versus the dzstance in wavelengths. The length of t'_..",.t
verse was about seven wavelengths. Of particular interest and typical of all _.r ,_,,,

at 4, 2 and ! MHz is the fact that H, and H, from the broadside antenna and !I
from ti.¢ endfire antenna are large and fairly smoothey varying functions. In par, ;_._f:,:

the H, endfire component is quite smooth showing no surface and sub,urt.J,._
rave interference. H, broadside, however, shows sharp nulls ._ about !-,_.;., _-!;

-55 -6O

-70
• °70

IO

/
45 I

i

-,,
L

0 2 4 6 II 10 0 2 4 6 II 10 0 2 4 6 e :0

o
• _'0 -67 5 .9_ 5

-00 ,9! S '
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-901 -.2.S \ -,G2S

-¢2 ,L "_ -112 S
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d -- ,

-t20* ..... lt25_ ....... .._____.,....__.127 S _._..,.___ ,.
O 2 4 6 II 10 0 2 4 6 II 10 0 2 4 6 It ;,3

DISTANCE • (WAVlfL|NOTHS)

Fig.6. Completesetof dataat4 MHz showin8H,, H, andH, fromboththe I-.W (hro,.I,,,d_

andthe_-,_(enclfire)antenna•(a)E-Wtransmitter,H,; (b)E-Wtraasm_tter,Fie; re)E-V,'tr.m_l,,1_..,
H,: (d)N-$ transmitter.H,. re) N.¢ transmitter;H0: (f) N-Stransmitter.If,.

q975008236-374



and 3-,b,1.Th¢_ nulls are the interference.,;generated from the ._urlat-edzld sub-
surface waves a', shown in I-_,ure 7. Ur,lng the 4 MH/data, comparis(m with lhc'c,retic:_l
curves _eads to a d/electr,¢ constant of about 2 3 and a toss tangent of () 10

Evndcnce in this parlJcular subset of the data for reflected energy is nov re' _,_tr_,n._
but the glmple curve is clearly disturbed at a distance of about 5 wavele,gth_, lr_+mIhc

i sotnrce. _,'e have compared this curve to a vat ;_ty of theoretical curves :_:_dit appears
that a depth of about 3.5 wavelengths for a reflector b indicated as shown In [-it,urc 7b.

Th_s hot suggests a depth to the bottom of the lee of around 265 m Thzsdcp,h is some-
t. what I¢_sthan the predicIed depth of about 300m but the agreement is r,:latl,'ely good

i and _t is lX_ssiblethat the ice thickness varies locally.
The other components are generally weaker and show very little character "Ih_s

relation _s to be expectecl for the minimum-coupled components and sugg,e,_vsth,_t
! scattering at 4MHz (75 m) Is minimal. At higher frequencies scattering becomes more

f significant and at 32 MH;, and at ]b MHz the main structure is that due Io scatledl:.o

g

i

d--3J_I

t[ .............. ::-

DI_,TANCt (WAVIIfNGIH_I

I,.,_. 7a h FI, c,'_mpont',_t I,',,m I, "_V.=_tenr,a. (a)theoretical_'ur_es',hov,m¢ clYct'tof _,ar_'ng deplh
tO the.. r_ltc_h,r d,_o _.llek". trig ¢_sIa,'d wwlh n _.'_nstant I¢.w_,ltang,erie of O 1() (b) t_cld dal;| a,d tl_rorrt_-

(d] _'llr_,c'g g'}!g_,lllg e_¢_.l ,)1 _,.iv_ in( lo_,s l.llhgent anti d_elcclr_c conslanl for .I const.mt dcpqh _f" 11 _1

wavelengths.

Ill/'

\
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111Figure g a set of data for all three components from the E-W transmlttil_gantcuna at
16 MHz is shown, The features to note nnthis plot arc twofold ,Cnrst,all componel_t<

are about equal suggesting that as much energy is sc_ttcred into the minimum-coupled

_t_ conlponcwt as is present in the maximum-coupled J|e and 11, components.."_c_,1_! ,,
is the erratic behaviour of the field components, which show' a wide range of rap_t

variations on a scale that is smaller than a wavelength. We conclude therefore lha:

,_x:alteringis a dominant process at 16 MHz, _mportunt at 8 MH7 and relatively unisl_
portant at 4 MHz. This ob_rvation suggests that the size of scatten'ers is typically
about equal to the v_a_,elenglhat 8 MHz which is about 35 m.

This result seems reasonable becau_ this valley _lacier is heavily crevasr_! and the

typical size for the vertical and lateral extent of crevas_z'scould be typically 30 m.
These results are comparable to those of Gudnnandsen and Chfisten_n 0968) _ho
had t,ouble doing airborne radio sounding at 35 MHz over valley glacier5 in We_t

Greenland. They attribute at least part of their difficulties to the presence of crevasses in
the _'alleyglaciers.

_, 6, Co_lmlom

_lhe radio frcquenc_ intcrfcrenc¢ techt_ique developed for the Apollo lunar pro_Iram

: will be useful for mea._urmgthe dielectric constant and loss tangent of the upper layers :
of the moon in the I'requeucyrange from I MHz to 32 MHz. It will also Ix:u_ful 5_:
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detecting layering in the range from a few tens of m a:rsto a few kilometers depend,,,£
on the nature of the layers and of the electrical p_ )perties. in addition. ,t is hkcly to
yield information on the presence of scattering bodies. This experiment has becJ_

tested on the Athabasca glacier. Here it was possible to measure the d,electric
constant of ice as 3.3 and the loss tangent at 4 MHz as 0.10 giving a value of 0.4 for

f- tan 6. The depth of the ice was estinated to he about 265 m, a value in rough agree-
ment with other determinations.

Admwk_.am_

We would like to acknowledge permission from the Jasper National Park authorities
to work on the Athabasca glacier.

This work was conducted under NASA Contract No. NAS 9-11540 at MIT and

under a subcontract at the University of Toronto.
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RADIO INTERFEROMETRY DEPTH SOUNDING: "uu'i_ "IyOUA,LI_-PART I--THEORETICAL DISCUSSION1

h I' ANNAN*

Radio intcrferomctrv i_ ;i tcchniquc f()r M('a lavtr t'art!, ,X[)l)rt'_,mlat(', \lq, .-i,,u. t,,) I!,,' fit',,!-
_t:rmg ill--fill t'h'ctrLcal l)roperlit'., and f()r dt'ft'ct- )HL'_,t'))c(ql t'oHtl'] ,).ir)_ l,()tb )h,)rx),tI 11:,,,f, ,ill ,',, -l-

ing wub.,IJrt.Lcc chut)gt', in dt'ctrical Dr,)i)(,rtic.. lit ,tilt] tim(, ,.a hlh. i),,inl tm lh,.l ,,: nti_.._).X_l,V_ Ih,

_t'UlO_iC rt'Kiotl- '_.i111%t'rx h)w (lt,e?rlt'al con(luc- ,,()lution,, _,itI(I a llt,lllabt'l ())"h,)l)()rl,tt)) r('-ull, h,r

th¢it v. ]cc-covt,rt,(] tcrrc.tr)a] rt,g[on> and tht, th(,r;tdlom'trft,r()nw!r._ d(1)t!l--()ul),h)) _ mvtho(l

lunar surfacc art, lYt)ical cnvironmt,nt< v,here t}li- Th(. half .l)i it' --lull(in. -I,,n', lit,t! tilt. llllt rt,t, t'
meth<)d can t)t,,tpltlietl. Thc tlt,hl .',trel_Lltb', ah-ut m(idilic> tht (hrecllt)ll,lhl.'_ ,d tilt, al)tvllq,t II_

& tran_nlJtting alltt, llnii pla£cd on the ',urf;tct + o1" ,td_hlloll, ,t rt"+'tll,tr inturh+r,.+(, . t),lllvrl) ). I)r, -( ,)1
'_)lCh an t'nvironlllt'llt exhibit Jntt'rfort, nce lll,ixinl;t 111lilt' _,urht.ct, lit.hi. ;t)),)ul Ih, ,)llrt ('. TIt( ',,It,,

anti lll]llillla wilich iirN'ch;tractt'ri..tic (if thc .ul)- (Itl(-li(ql ()_"ii MIJ)MIr[,t(.t I),,I,)),l ir_, m,,,!,h, I',,,

,..tiff:tee t.lectric;iJ i)rol)t'rtie_. .,tlr)itct, fichl. ',_ilh lilt, i)ilerh'r, it(,. it.flit,t), .',),,,,

'l'hi_ l)apt'r (l),).rl I) (,xanllllt,. thc thet)rt, lical hl_ it _i,h, r,tllgt, td l)()...ll)l(, lit h,t_,l,,r. Tht ,i, tilt

_.l'le ilattlrt, of lilt' elt'clr()lll;igllt'lic lit'his ah()u! ,)rt'tJc;tl rt,,.tllf,, i)rt)vl,h , a I,;t,,i,, hit itd, u,rl I,I)..,
arh)u.,, 1_l)t"_ ill dtlmlc ._Otlrt'i'. l)iat'l,d tin tlt(' '_llr flit" eXl)crimuttt,ll r( .,tlll_ tit ,.vril)i t[ 111 |),ill I l

f,tt'e t)l ;). h)_-h)',', di('Icctric h,dl-.q)aee and t_t).

I_ l'Rt)l)l)( I'ION nuuuir "qlrla(.'t' )ll;ttt'ri,t] I)a'_ ,.llllJl,tr (,h,( tric,tl i)r(,i )
Tht' >timulu. h)r tiff, _ork wit_ Iht. il_lcrt, t in) crhc,,.

tilt, tllt'.t._tlrt')llt'llt tll lunar i'h'ctrical pr-l)ertit,., in .%il)('t.'ch,ctroml).gnt, ti( nlt.lh()(I., t,,llll)l()llt._ II .t_]

_.ltU and tilt, (h,lt, cfh))l of ..,tl})stlrfact, lay(,rm_, it ill gCt)l)hy_i(',_ art' (](._i_tlt'(I h)r t,)ll,ltlt (ll:l (,tltll
g-/ly) by t,h.t'tri)tllil_nt, llC nlt,tJlt)(l,.,, Ul)llkc lll()_,t |)r()ltlt,lll,,, ,i flit'lilt1(] ()l (lt'l)th '_l)tlll,hl)ff III ,t *l*)l)l

region._ t,f the earth'.,, surf,wt,, _hich art' collthl£ ina))ti 3 di(.helri(' e,trth l)rt',.t'nfc, l it. _,( ry (lilTt,r()it

ttvelargt, i3 ductotilt'l)rt'_t'llCCt)fwa(t,r, lh(.lullar l)roJ)Icn). ()i'll, l)t).,,,il)h, mr'tit(it[ (if (I(1)t'lt))[ tht,
surface K believed to he ver._ dry anti, thert,fort,, pr('_,i'nct, t)f a bollndary ;it dcl)th in a (li,,h,t Iri( i.

to havt' ;.t vt'ry ]l)w clectrital COl_(hlcllvity (Str;tng- th(, radio hlterft'rt)nli'lr 3 techtll(lUt' ) hr.l ,_tl_(',,t('(I

wa3, It)riO; Ward and l)t'.v, 1(171), I,;xtt'm, Jvt, ex I)y Stern in 1027 (rt,pt)rlt'(I h.v I'_v:tn., 19¢1,_).t., .t

perimenlal work tin the t'lectrlcal ))ropertit,s tit methnd 1t) lllt'il..urt' tht" tlnckm',.. _,l ghiclt.r_ 'l'h(,

dry gcol,tgic material._ by Saint .\mant and only rel),)rtcd ;tt)t)liciition -f thu h,i'IltliqUt ' i- lilt'

Strangway 119701 intlic,tte_ that the.c material_ work t)f H-Said (10._¢)), whn alt(,)))l)lt,d h) s(,tl,),i
are low-lossdiek'ctrlcs having dielectric constant.,, tht' dtl)th <if the water tahit, in the I,]g3 l)tian ,It,.

in the range 3 to 15 and h)s_ tangt'qt., con.,,iderably eft. Altht)ugb }It' ,,uccc..,.fully mt'a.urt'd _,())m. il_-

h'ss than l, in the Mhz frequency range. Analy.,i,, terferenee lllaxilna and minima, hi_ mcthod of

of the electrical properties of lunar .,,ample,, by interpretathm of th. data ),_open to qut,di(m ill

Katsube and Collctt 09711 indicate,, that the light of the l)rt',,t'nt w,lrk,

¢' |)re,.eTttctl ;tt the 301h Afll)tllit S[';(; Intern;tit(real ,'_|t'clhl/2, .Nt'l)lt,llht'l IN, I'){)q %1111111,,('r1111 )l'tt'l_.t'tl I)_. the
T l',,lilnr At)rfl fl, 11172;revNed nlanu.,cril)! rt.ct'ivt'd Scl)t(,ml,er .)?, UH2

i * Unlvt,r'.ilv (if T(,ronh), Toronto 181, ()nhuh,, ( ':tll,'l.,It

¢_: ltH3 qot ivt v .t I'_xl)h)r;ttion (;t.ol)h_ ,,ici.t,_. All rtRll_rc-t r_,t'd

I k
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$.111 Annon

The radio interferomctry tcchnique is conccp- ch.ct;ital I)ropcrtic_ ,,f lh,. tarlh : ml can hr. u_t',t

tually quite simple. The essential lc,tturer, of the a-. it mt.thod of iT,f('rr,Tig tht' ,'.trlh'. ,'h.cITit':tl
method are illustrated it, l:igurc 1. A r:tclio-frc- I,rt,lwrtit', at ,h'l,th.

quency source placed tm tilt. _urlacc of a dich.ctric The prtd_h.ln ('h._c.n t.r. tl, ly in li_, th_-rt.! it .tl
earth radiates energy both into the air (or fr_',, work _s:ts that t,f 1}1, _._.;tx't.I_:ttur_' ,,I lh, lit.hi,,

space) above the earth and downward i,t,, the about vari-u_ I)_)mt-dq_.lc ,.urc, ,- pl:tc,.,t .n Ih_.

earth. Any st.bsurface c,.ntra,t in _'lcctrical l)rol_- ,urfa¢l. _tf it t,,_o-I:tycr t.arlh. I h,' in.llh(.nlalic:tl

erties at depth will re._ult in ,omt. encrgy b_,ing _lution to l}_i_ t)l)+. ,_."imtlnd,trv '¢:thlc r)r,,blt.m

reflectt.d back to the surface. A., a rt,_t,lt, tht're i_ h)uml is_ iltllllt.rt)tl._ r_It.rt.lu'_..,. 'l'ht. _,.,,.r;.I

will bc interference maxima ;.thai minima in lht' pr.bh.m c)f t'lt'clrt)lllagw',it" _;t,.t'. i,_ ..lr;tlilit._l

field strengths about the s_)urcc (luc to waves mt.dia i_ cxlcn_i:'cly o,w,rt.d I,3 SV.lll (197t1),

traveling diff.-rent paths. The _Imtial positions of Brckh.v,k_kh (l_)t_')), I_u,ld_.n (1_)o!), "x't,lt.ii
the maxima and mini_-_a ar_. characlcrislie of the (It)37), aml ()tt (1941, 1'l.131. :'_l*h.ugh 11:,. ,4,It,

Air
Transmitter Receiver

, 10

Dielectric

Reflector
_\\\_\\\\\\\\\\\\\\\\\%\\\\\\ '

(a)

Transmittec-receive_s_lratlon

(b)

Fro. I. (a) Transmitter-receiver eonfi_uratmn for radio interferometry, _h.winl_ a dirl?ct wave and :. reflt,eted
wave. (b) Schematic sketch of tylfieal field-streng*h ma,ima anti nlimm_ a_ Ihe tran._r,,itter rec,',vt r _'l,:*r:tti,,.
inere_s.

I
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Radio Interferornetry: Part I 559

tion to the boundary-_aluc problem can be found The geometry and c.or, linate _wlem_ u._,'d in

analytically, dw integral expression, for fields the boundary-value probtem _re .1,._,,,,,F,gure
cannot be evaluated exactly. In the radi.ttion 2. A p_,int dipole source i_ h,cah.d al a h,.ight h

zone, appr()xi,_,ate solutit,n_ to the integral_ can on the e-axis _b,ve a tw(_ layer earth, where th,"
be obtain'.'d b> use ol the theory of c,mlplex earl- earth'; .;urfao' i_ in the , y plane al : - _), an,I the

ableg :ml .special meth.d-, (,t omt,,ur integration, subsurface boundary i_ at ._: -d. The regi.n

The preceding rch.n,nee-, plu. numerou._ oqwr_, g>_(I is taken as air or fret' space. 'flit, regi.n
dl_cu., tht'..e Icehnl(iue_ in ,h'lail. Since much of -d_:<() i._ a low-lo_ dleleclri," _l,tb, :Lh(t th,'

11,(' (h't;til,'d w,,rk in lh,' malhvnl:Ltl¢;tl of(vehq_- region : <"-d i_ a half-sp:te,, (_t .trbflr,tr._ ch,t t rlt .11

1"11('11I o1" ']lc',e .,,luti.n i. CoVllJ.llle(t ill |]w ;tb(,V,." prolwrtie_. 'l'hes,' rcgi,:,vl,, ,tr,. d('n,_ted (1, 1, J.ntl 2,

rcfcrcnce._, lhe di_cu..i.u ol the ,,.luthm_ that rid- rcspe( tivtly. K, and M, arc lhe om,pl,'x di,'h-t*trw

l,,_ xxill be prmmril_ aimed at the r.ulm inter- constatll and reh, live pvrlueaL, ol each reghm,
:¢r,,mclr.x ;q_l,hc.tth,u rather than thu rii;.l.lhvmali- rt'..,pectively, l:or c(msid,,rati.n of vcr!_c;,t ,hp,4(.

c_tl ulanipul.ttlo:l., rcqulrcd t_, obt.tin ,h,.m. s.urces, the dipole mmnenK are tak, _l .dig,wLI

.'it.h the : :txi% f-r tile I.,riz.atat dlp,4e -,_urre-,

THI.'OIIF lit AI. I_O|/NIIAllY-V,_LIPI" PR(IHLEM Ill(" dip,4e lllOltlell[S ;1re taken aligned l+:tralh'l t-
AIIh.ugh Ihe vari,,u_..,Jlutions.I the b.undary- the x-,txi_.

value probh.m fi,r h.riz.nt.d and vertical (.leetr[c The _,,lutions art" nm.,.t convt.n]enll) written

an(I rtlagll(.ll(" dlp(4e ._,mlret'_, .xer a t_,, id_'.'r :1lid dl,,cu.,,.',etl II.',ilIl¢ flit: chclric aIl([ llla_ll(.lic

earth app_,tr in the liler,tture, a c,_ntplcle and lh'rtz vt'ct(_r p,)tential m_lati.n, (h, the :t.,,sump-

con.'_istt'llt taln+l ttt,m of the soluthms <hw,, ll()t, tiull (_f ,t ttnlt' dt'lletldCllCe (' ,+t aml hnear Ct)ll".li

Thclef.re, Ihe h,umdar._ +xalu,, prohlcm i_, -ut- tutive equa, thm.s in Maxwell'. equations, ore. ,4.
lined here, au,I a uifiht,d n(fl,Ltion i,, U.;ed lu ex+ talus the fi4t.win_z expre.,s.m, hw the eh'ctric and

prt..,,_ the _(,tuthm_ This t'o,v,l..,tt, nt n.tati.n i..f nt.'tgnetic fields in terms .f the lh,rt/vcct,)r..,. For

ctm_hler'd,le help m lah'r ,h.tu.sion. o¢ ",,,...(4.- electric dipoh' ._ource_, the electric Ih.rlz vector

lion.. _ati,,fie_ the Ih.lmhohz equall,ql,
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560 Annan

P 'l'hi._ cho2cc of _calh_g IDaramct,r Inake_ all Ihv

T'ql -'(- k'-'ll = - , (,I) folh)v, ing inlcgr:d ..,,,lut.,n.. dimcn..i,,nh,.,,,
K_I)

A', ,,hov,n l O' .%,_mnlt.rh.hl (lt)*_); l',)r., h;tlf

with lilt' clcctric and magnetic lh,hl, dt'lhw, l by .p;ttc _.;trlll, and cxlt'n,ltd I. ,, nmlld,_yrrr, l _.;,rth
hy _V,tlt _I_,_7(I),tht- lh.rl/vt,cb,w, for lb. vt.rln al

I_. : k211 -I IT' • II, (2) ,hl,,d,' ._,,urt','_ hay,, (,ids :I = t,_l]lll,,llt,rLt , _hlh' h,r

;,ml Ihu lu,rlz,,nt:d ,lil.,h..ovrtt,., lhq. lh'rlz vt'tb,rn
have b,,th I and -".COml.,nrnl_ Tht, v,,rli(:,l dl

H = -- i_/t'_0%" X II (3) pole .,(,llrt_'-. h,o,'v _,,lut,-n. ,,I lht' l,,rm

whcrc k i._ the I)rol)agation con,t.u,t. _'KMe_uu I " c'_"t_
and *o, #0 tlcnotc tht" lwrmittivitv and iwrmeabil- Ix• g
ity t,f frt'c .-pace througtlout. P i_ Iht' electric di-

pole nlomcnt tlcn._itv di,tribution Similarh., for 1 /_ " ,\

• " J ao_,\),"r"/'" Ifu(\l,l,l\. (lll_magnctic ,tipolc sourct..S lilt' re._ulls f,,r the mar + 211" _ I',,
nctic llcrtz vector arc

_2[I + i,'ql = - M. (4) II_. 1 J'" _ ,
= l,h(,\)r I''7 I ,t,_h' l"/l

211' . I',,
anti

H =-- kql + g'T' .ll, (5) r' """/I,_,(Ap),/A. Ill)

E = i_M_ X I1, (6) :rod

_ht're M l., lhr m;.lgnt'lit" dq)olc momrnt den.,,itv II; 1 j" _' ,\
• -- o,_(A)

,li,qribut.,_l. 211 ., I',, (12)
I'I., ,hl.,!t, .,,urt,'. art. lakvn a. "unil" point

,hl.,h' _,,I]r,t,- Iocalt'd ill lilt' rvRI,,n:>0. Th' _ r,/,, r, r,,a r,,_,lll, l Al_),l,_.
t'h'clric ,lq.,it, lllOlllt'lll ,h'n.,,ily diqrlhuti.n i,.,

X i,_ lilt" ,.rp;ir;llloll c,)ul_lanl tfl lht d_'l'_.rrnli,_l

= 4_-e_(R)e,, (7) cquatitm, and p, -IX-' -/,_)' _, will, lh,.-l_i= ,,! thr
ruot bciIll.: ('ho.,cn -_=t'll I hal I h,' ,,=dll_]-vt ..,it :.lit,.,

wht,rv e_ i,, a llllit vvch)r in thc :-dirt,¢tlor_ for the riltliitli_,ll t,,nthlion In lhc al.,_,, f,,rm, ;tlh,r

a vertical Hctlric dilmlc source and in the ,_calin_ h,, II', A i. ,, dimt.n_.,nlt,_ imr;,nwh.r, a.d

r tlircclion t.r tilt, horiz, mtal dil).h' _,,urcc _(R) k_ )_r(k_.tl_)' : _ lilt' rvh,tivc l)r.ll,tgal_on (t,n
i- lilt' lhrcc-dinlclt,,i.n.'d dolt'.= l'tm,:tit,n, and _t.'*.tt,l'c.wh r,,_:l.n Tht,,;,(k) arc,,]nknt,wn llllll'

R=I,"+:.'-'+(:-I,N":.Similarb for the m;ig- tion_ ,,fX which arr [,lUridby _ali.,l'_in_ lh,"

lit'lit' ,lil.,h' ..urct'., ImuI_dary t'tH1th[loll, lh:It l,u_gt'nli.d E and H l,t,
C_llltil_tloU_, ill -'.-=(l lind =_ "-d.

M :: .hr,_(R)er (8) For tmriz(mtal dil.de _tlurct,., th,, .,,lull,.,. h)r

In lhu hdlo_inlz ,lintu_._ion,,, n. di.linclion hc the lh.rte vcclor take the h_rlll

tt_t'vn lht. clct'trw and ill:lgntqi," Ih'rtz _,t'('l=_r_is e=l-./t0

ma, lc. _Yhvn t_¢. rcfvr t,_ Ht'clric dipoh' _ouro'., 11.

lilt' t'h'ctric llt'rlx vc_:h_r i_ implied; h, m_,gnctic ll'R

dil.dt' ._ourc_'.,,,lilt' m:tgilctic lh'rl/, vcclor is ira- I /" = k (I._)

plit'd. In adthli,,n, tilt' fret' _l_aCe _avclt'nglh is + J t,,,(,\)¢" _'o,z, _ II,,(_p)dA,
l;tkt'n its lilt, ._cahng pilr;imt,h,l' (lit' :all h'ngth tara- 211' . l',l

,;,llrt,lnt,lll._ Ill _llht,r tt,,r,l., ,l di.,,lilnt't,, (h,llt)lt,d p, &lid
i. m fry,, ,.llilt't' _v;¢vclcngth,,, :llltl lhc Irl.le h'lll.lth

c.,¢ _" = _'-'i. II p, wh,.rt, II" i. llw Irt,c _pact' _avelellgth: II_. -: _,,_,\)
2_" 211 J ,= I'0 (I.I)
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th* prvt'v4m;., v\pr* _,-=,m- =,pr 17H' Ih'."l/ ',,t'_l,)r-.

lllz= It'h(,_)+l':4 h,(X)_'I'l_'l Inlh, hdl,_mu,,h cu--I_,l=-,,i.;11v,._,,-.,Iv,l,utl
_ll . = 1_,, h_ II, ;re+l, _r_m,_-I ,,_-l,_h,,'-, .I, I. ;L,-Utm,I t" hv

tl._l ¢'h,.v t-It I'1., .iJllltl_,tl. ,It< ,h.,u.-,'4 m l_.

•q" '""ll:,(_p)ll,\, D;Irl.,; th, h,dl-]),Ul' ¢_IHInHI-,tIM h, lw. I:_,,,'r

a.nd *',Lrth --It=ti,,;i., 'J'h(' t_,llt",l_,Jtt -,,ILlfl,_',- hh Ih,' ;.
lh'rl/ xt'4. t,_r-,ir, ,,l,t tmt,l l,_ ._ Itln.,, l,,t A ,,tlid

I,_',_ I'" '\'' I+I+'\)+'+''/ "{ ++('\)" l"zl 11, .it+ £,1 , ,l,r, -.i<,;:. <I++) lhr,,u:,I, ,I_; 'l_,_
ll_ =- 211 J + 1,, hull -p,l<t .,-hilum .... l,,,n.l,b'r:d+h ilIf,r<'.l ,,I_,v

1(_) th,' li_,t+l. ,ib-ut t;.. _++tll(-,, .h,+xx ,lllqrhttlti_'
"+' /'"/lll,(3_P)d,\ !n:txint:t an,l nmlmi,= v, llh,_Hl ,t '_Ul_.tlrl,ttl' rv

l]¢'l++'t,,rI_r,t_'ql It ,d.,, i,r,,_,,h- .t b.v.v tt,x_.l for
for r¢'_l;_ll i, :tnd dt'h't'titm ,,I _* lh< t=,m. (r,,m ,lt'llth

= _:l( ,_ ) tl'l,l<_|XIMA I I 's()l I' I I,=)_'*,

2tl ,+ P,, 17) II,11_ ",I.,,., ,,.th

• r+'' +++': +" '" e"_+ll_,('\P )'/'\ , •l'hv ..+,hlt i,m ,,I lht' h,tll ,p+tl t' l,l-l,h m _. _r, alv, l

;IIHI _)% lltlltlt'rt,ll_ ,tlllh*+r_, ,||hi Ill( '+,,.i_.* lllLl+ir(, ill till +

hvhl'-I-',_'lld,'lm,,I. In lh, I,,ll,_m_;dl-,u.....m.,
, _+)'.<_ 1+ " ,\' I]lt.r_-ull-.,fllltl 'l'_ll+ ,tu,I Ilr, ld+,,_+.kAh _l°J+'_(lt

if: J ' ;{'\) art, l',4l,_v,l ,Ill'If' I ll_ _ I% .lllrl d¢'l;tlll 'I dl.( lln.l;H1-211' .+ I',, I,_) .'
,,I v,lrh,u- .t.l., i. ,,l lit+, +.,,fur,m. +,+fluhr. h,uh,l m

++',/,,+', m,. +"'+'I/;(,\pM,\ lh,'.v _t,h'nt'm',. II. _.=_,' it;llllr,, ,,I II.. h_hl..

f_rrt._i,m _ ,d,,_ul lh;. -,unt ,'I.fllu-tr4t, ,l .l_ l"i_ur,' ,{ 'l+h++
xx;ivt,lr+,nt,, ,h.m,t I I .tntl /+ ;tit, -idH _I, ,ll +x.t_.v.

']ht'p,lr,tmctt't-,\,lll, + l' ,ll'_'lh¢'.,,tllh';t.,h+r tilt"
£II lilt .Hr ;tI_,P (,tvti= rtL'i,m., v_,l'_t+(' i:l I]H ,tlr I,.,

v_'rti¢;+lldil),4t' -,,lu+,,m-, ;tnd th*' t ,_t.,ri( P.'lll.,+l++f_+

.u_d <:(,_' art. lmm,l _:, _,itt_t._ 111_ lhl I-++HIdIIitHI ;ill +llh,_lllt+_t m'4_It- xxa',,', ,lit,! +,',,,_,_ l/ i,. lh(' I;LI'ttl
!l,l+',, fltllllt,rc_u.+ II+IHIt ", till I1)+_ I (,+lllflll)l) Ill III_

th.,t t,m,..:,t,nli,d E ,ul,i |I l,v t,mtmu,ms ;it th,,
b+.+tllld;trlt,_ h,';,,I, 11:Ll;k,_,t l,ttt.t,ll _x,l,,,t,. _%';txv. (' ,in4 /), x_

Tht' b, mlnl,lrx t,m,I,+l_,il, h,r tht. llt'rl/ vtt+tt+r ,, ++lit} hl ;t lira+t, ,I -l,.Hi,,f r_l,m, +'.htch _. 4vhm,4
4*+ th,l-v l),lllll'-+ xxh,).t' [l_+-Iti,_ll X,'tllff- m,l_t' ,I11

:m'l th,-' rt'-ultir,_ t._l)r, ,,_t_,t+. h+r ,l/_l, t+,l,_), ;tml

+,t,_; ,=rr +:d)ul,th.,l m ,\+,l,v,.h× _ 'l'ht *,xl)rv. ;ul_l,.' vrv,ll,'l thai+ *'_: :,lth 111+,: ,I_,,. 'l'ht'd_l_.,b <_,'

qun_ Mr ,It',,\ 1, I,/,\ ,, ,tnd, ,t+_l;tr*' _xr{ltvll +ll tt'rn+., ;. rt,hm.d +u Iht,, rill, 41 ,m;,.h ,,fIht' =.,un,l,tr+, ,uM

,,l th*' 7"/'; ;tn,l /'11 l'r_.m.l id,tm , _x.tvt'r.,lh'ct;_m
%11lilt' dip.h' ..ur¢_,- ,,xhihit thv ,;un, +_,lx,,

;tr)d tr;lll_llll-'.,i,lll +,,,,'lh+, t, +If-. [",,hl_ thi.. ll()t,ttl*+ll, ll,tl_,Irl'"n'.dt'mqlll_ir,l|l _l+++,'++lilt' _,_,,lx'a_ .lrl + d*
llw-in111;l.ritx ,,I all lh, -*+hlllllsl"+ i_ _.'tt.;trlx t,mldl,t

'_l_.Pd :|lid nhlkt's _l llt r,tl di,,ttl'_'_+t_ll *_I lilt' -,,hl rivv4 tr_in lilt. +lll¢._r:tl t,_,l_r,._,.bm % tln, _+,'IIH;II

tic+n, l._._,..lldt, rlvtht'r tIl,llld¢,,tlin_ v, ilh t,:tch _+tlrt't, 111;_._,,_,'it' ,l,l.,h..+,,itrtt, i. lu,,_,l l.r illtl',Ir;tli,+ll In

+t'|);Irlttl'I.V tt,t ' ;dr, tin' Ih'rlz _,'t'('t<+rI-_IVt'li I+y

In <li-('u,,-in_ tilt, ;tl,l,r,,_,im._tt, t'v+,lu;tth,n l_l' thu _, *"_"/: I/:,, 14

abuvt' inh._r;tl ,'xpr,'-.,l,m., vxtt, n,.ivt, u.,e i., mad,. II/ 'I'- ], ,.in O,,/&dll,,)
of the.' pla,n;';v;tvt' '_[It'l'Irglll I+(+IICI'|)I, '_ilIC¢' tilt II R 211 • (lU)

w_+_,'l'utattlrl, t,i lht. l)r.hh,ln ,,, m,,4 t'h'ttrl.x ult,h r , ""/ .... '"/I;,{ k,,IJ '_;II fll,,),/0,,,
'4,),)d tl',ill_ lhi', ,tpl_ru;t+,h. A br;,f ,)tltlim' .I tln,

ll_;ilt_, '_x,IVI' ,..l)t,llrulll l),It;.t|l<)l| tl_t'd ;ttld ;tl)])r,+xl +lll;l ill Iht' l.,irlh li, x

matt, t,xa+tl+l.tic_ll t){ i=tt,'_r;tl,, by tln'-;uhlh'+l,,,mt

ntt'thml i- =ivt'n in ,\ppt,ndix II. i]:t f
l".r ra4i<_ mtvrft,rtm_utr_ _ppli¢+tti-,' tht, I1_-- _ ,.it+ =7'to+O_)

• ' 2 II ' .+/, (20)
m,hl. :It thu t,;trt}+'..url+,l.Ct , l',_r tht' ,,++urct phtc¢,+l

;+ttthe earth's, ,,urfact. 4r,' ,=l'prima.ry h'_tt'rt,+t, thi,, ._ ,+,z .... "11,_,*h=p _in Oil,lOt.

+,
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F'tc. 3 Vba_¢fr.).l., ;flmtzt a (hlx)Ic _')urre .. the ._ur[:t('t'of U llalf ..l)a('r r;trth .I a))d /') art .,phvdt.d _*,tvv
in the,air a.d carth, rr.!_'('twd_, ,t,tt ¢'(.' i( a. inhonmgrn¢_)tr_w.'avrhi =tiT..'lndI) r, thr hr':d _av_ ,. Ihr r;trlh

With Ih," aid t)f Ihv II,mk,'l tr.m.f,,r), idrntity and
(Sommcrfvhl, Iq49),

e'°" ,kof sin ,,, ,l_ ¢"" I)i'R = 2.'J. (.)t) - irR 7',.(.)
' (24)

<,..,. ....'.H'_(k,1..i.01,),t0,,. i [7",,_(,,)+ ,,,t ,._ ,i,(,,)]'.: a.d tht..,'lation X,j = ?',j- ! for thr Frr.nrl coct'fi- 2L'IR
cicnts, cquati,)n (I'_) bc¢omc.

I

ik,, /" whrrc R=fP4 7,_1'l:, ;ul() ,,- hui ' p I/l. I';xf)

, II.. _ | .'.in O,,7",a(#,,) l)rt's-i,,.. (231 ;in,] t 2.1.) c,)rrr..l.)n,l t,, |hr ,q)hrri
211"J# (22) c;*l wavr....I an,) I¢ i. I",_tzrr _ Thr ))rlu.'k,:tr,)

i
, .cat,, /' ,.,,,,it .alO{./ O_ill 0,))t/O,). h'rnl., ,)n thr r,£ht ))hQ, b,' i)lh'rprd('(i ;t-. thv

n1(),lifi(.-;),tiu,i t,) th,' dir,.di,)ftaiit_. ,'1 thv ..)urr,'

; i'..i.," fllr ..,a,hl!r p,)inl n)i.tho, l it.. ,li.ru..rd in dur t*) the l)rv,.enrv ,)f th,. )x)un,l.ir._.
i ,'_l)lX'.,iix It, th** ;q)l)l,)Xim.'m . ._,,lutio)). ,,f flu' 'l'hv w.wt's (' aiul 11 ar,' t:,'m,r_md hy ¢r,,..,,._

I int,'gr81 exl)rc....,.i,).,) (21)) i),n,l (22) art th*' l)r.t)Ich lx)i,)t, of T., at.l 7',. t,) ,,htam thr

,_._d,lh.-l.)i)_t .ohLti..., {)3) ,tn,l ,2.1) )'1,r ;u)¢h'.

t"kaR I

i !1_ = II'R Tot(.) c)>d..li,, oulhl)vd in Al)l-'"dix B, II)v c,mtrihu

lion of tilt'l)r;i.th lD,)l)xl Gin 1)¢' iq)l)roxhn;Uvh

(2._) vviihliHr, i h., Ihr mrlhl.I i)! ,.h'rl)i...t dr.rt'.l 4".

i j), ,J _. h)ll_ :t.',_l_i_,III)t d,)'.,e U) th*"hrai.'h IX,int. l',)r
¢2koR (7,.(_) + _,! _7 _(.)) , a>,/Ihr (.'xl,rr..il)n.

e • tp,

I_ "-" 2il#t)m(l -- col a tan #0n) = ..... _ _h'lx
(ki- _'_.),¢ (._I

a.d
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r

/_ 2i/,'._h.( I t ot _s t:lrl f/_.) ;=/'

mu._t by ad(h.d tu (23) at.I (24) in ordrr that th,. ch'r B'arr, lrn, t'l._l, Ilrrkh._ .kikh. It_',4t. ;..I

,_o|ution,,, I.: o_rrect. I':xlm.....ion (2._,_ L., rvaddy W_it, 1971)) havr c-n.,,hlcrq,d ll.. iprohlrm .inc_

identifi_.'d _l. tit_.' i.hom,,_rm,.u,, w_,.v (', _ml {_,_ th_.'n u,dng tht" m,.lilird ..;ul,!h f.,i.! h'( hmqur h_
corrv_l_)nds t_ thu lat,'r;d _;z_',' D vvaluate th_ intrgral,, ft. ,_ - r 2. _, h=h a tru,

The a_)ml)t(_tlc ,.duti.n._ have th,: form ,)f lhr ,_url:¢c¢_:¢ve i., m,t rxcih.d, tin i_d4• _nh;mcr., thr
geomHrical ,,I)tics ._u.ution plus ..q'cond.,)rdl'r c,,r Iirhl.* nr:Lr thv ._mrc-v in .,urh ._ m:¢tmrr th:=t thr_

rrd_,,n term,, l",,r a perfectly divlvctri¢ rarth, _'_11olT appr.xim_trly a, _/,'/?_ ' _t lar£v dr.-

cxprr,_iun., _24/ '-,nd !26) hock,me i,finitr a._ - tancr_ l'r_m lhv ,_mro:, _hc It, hi. ;_rr l!h,.c drier

appr_,achcs _'. 'rl_e .,insular heh.,vior ari._e._from minv, I t))' thr n.rm.'d ._¢,1,11,'i,,mt mvti_,,d _ i_:ct,
tht .,ccoml ordrr term. _hich dq)rmt ,,. thr havea I/,'A'l ;f;dl._ 'rl., tr:_..ithm hvh_e_'n th,

dcriv._tivc* _f 7'.,(80 'rh¢, hr,.t order tcrm which r_ngv_ i. dvtrrmim,d b) Ih,., I_r,,ximit) ,,f _¢ I-

t. tht' gcomvtr=cal optic_ ,,_,tuti.n r_'mains I", _. ll| Ihv radiu h_tcrfrromvtr) iq_plicati.n, tht
hound¢,d h_ thN particular ca.,e, the _m;l': _ ,.'=,rth I)rowrtir_ _,t inter_q arv th,)..: ol ,¢ I.v,-I..,,_

i_ thr critical :znglc of T_01#=).A. ;_.rv.,,ult. ,'._' ._=ul- ,lirh'ctric which i,, a_,,umcd t_ h,zve .hi) m_.h..ratr

dh" point and branch p.int coincide at ¢==a', aml c_mtra_t._ with tl.. frrr-.,,pace pr.lwrl.... 'rhr iv)h,
the appr,,xm_at_' meth_.l.., u,_ed to rv=lu=tr tl.' m thh c".,c i._ _*ell away fr-m r 2 :m,I ,I....m

intv_ral., arv n_ hmger valid. 'l'hv conical ,,urfzc_. ;,tTrct the preccdin_ ,-lution_

M)out thv :-:=xi.,. dt'lim'd I)7 c_=_=_, i._ thv rr_li.,r; In the l_rlicular ,,itu;,lhm ,,f ;.*. r:_.rlh _hrrc
_herc d_r tatcnd :u_d ...,phurica,I wave_ mrrge to M,,'-Mh _he Ih.rtz v,'ct-r tor a _'rdr:d .r-.m..dc
gcthrr In Hfi., rcghm the tv,(_ wives canm)t I)r lil.)l¢' can I.r evaluated t.xactl_ I-r ==/, =11 'lh_

con,,idrrrd ,_rp,¢r;ttrl) ; the c.mhim'd rffvct of thr rv.,ult i,,

-a,hlh |)-mr ;trot I_ranch I) tint nm,d I_"¢valu=trd

liar t,, _ xl)rr.,.i,m (20) i_ _ivrn hy Brrkhov_.kikh (/.'_--k.)ll'#" p
(l')t*_)), t_ h,_ ,)ht:thP, a.ll a.yml,totic ,.,luti,m _ it h f _7 )

the ge,,t,,rtricld ,q,tic. .,)h, ti,m, =. tl,e ',;I,h,,g _r,,,.{,;/,,_ 1/].term I)tU, :tconm'cti.m trrm _hich lalh -_' a,,
(/,'_R) "_"* i,_tead .f {L'=R) _ rl._ rr.,ull indicatr,,

that tlw _c,.mrtrical optic,, _oluti-n _till dr,,¢rihc,. :_.,.,,how. h) Wail * I'IAI) I I _. I .... ,m. ;¢ ft.'* I,

the firhl._ adcqua.tely f.r_-_" when {kd_) 'h<<t. .n thr apl_r-ximatr ._dulio_= I h, q,r.rm, lm..h,
'rhr corrrctio.I tcrm._ given i, (24) and (2h), how ._Jution. obti_im.d h) =,l,linx. _. '. ,; . 2._) .,r _ '.

ew'r, arC' n,,t v=d.I _ h¢'n ¢v i. clo.c to o'. =,.d _2_'_)f.r _ - =', 2, i,.

'l'hr firhb at thv rarth',_ ,,urfacr are of primary 2i
int_'_v..t ,tnd art ohtaim,d hv ,,,'tting :=() and IIz= IIz= l*,r' ..... _ , ....I '; )
¢==r 2 ill '23}, _24}, (25), and t2h}. Thc _}lutloll._ (k_-k_)lrF _

givvn arc' valid f,)r thi_ r,l¢_,,n I}rovi,hd thr c,m

tra.t in maturial pr.lwrti¢,, i.. not extremvly larllr which =., Ihc ,,_mr a,.,_7} =t II.rd ,r Ir= turr0,., ;_.IN,
In th¢' c-..r ,)f largr contra_t.% a,_,<c-,r ill ¢om|uc- m'gtcctt'd

Thr mt,'gral Vxl_rr,i,,i,m,, I.r rw Ih.rt/ v_'cl.r,,
tire ,.arth Im)hh'm.. the tr;_n.mi..,,io, aml reflec

l.)r the t_lht'r diI.J¢ .._uro'- ra. I.. trea.h.d in Ihe
t=,_rzc...'fficirt:t- ha_,r a |_=e nvar #0=.11".2. "i'hc

.am_ manm.r a,_f,)r t}.' w.rtic'd tlhtglll'lic.lil.dr.1.de i., hwuted al #,,= r -#_, _ hrrr tlz i_, thc Ilrc_
For;-II, i_ Ih_air, lhv_ hi¢vr Ihr I.rm

•.trr angl_, rhv rcd_. ,q thi. I._h, in r-,di, t_;,vc

l)rnlr, igati, m m, vr a ,(,mhl, ti_,' r;trlh h_ Iwe. Ih, t '_'# r (_'.h_)"l

-_t!)ic_.t ,_! ,I lrcmlts,l,,tl_ d_lli,lltlt ¢)1 ,li_l'u.._ls_', I t_', _,_,__ Nilt '_)" L'"'") /
-:,_ _i,mml_rl, hi 'l_Nli}, |'}|'A) I'lltl:.ttq'd lh_.. t'lHi II /_ J/',,RJ
l, l_L1hlll ;it thl, l,d,' h' {|II'/l'fllllI k -tlrl.lCl'IA.I_.I.

\.m_rr,,r iw,,I,h %,,r!,,., I'}_ lilt, l')tl, Van f (_,},._; (I ¢,,t,, l l,le,,,)

f i
I
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e,,,,._(s,_**_d= ti-.- i. l,, r,luate 11.. r;ufiat,,., i,all_.r,, ,,I thq
•Ga(a) ........... • ..urea' on th.: I),mmhtr) t- Ihc hr,d ,,r, hr I,,.rll, _.,

|VP = the prccedin_ -_,lutitm_. 'l'ld. h.tl,.hiu,' ,Icm,,a

_,trate,_ h,_ tilt' [_)Ut_lJ.Lr_ nt,)(lilw- it,,' ,lift t I,,,;la'
Thc (;,(a) for the variou._ sourer,, are talml.ded h]
Table 1. Tlw dectric ;rod magtwti_ firM. can bc it)" of thl ..,.urce. 'l'lw radn.tvh,n b,,th rn_1- qI.Lrp]._

obtained by differrntiatlon -f the prect'din_ ._lu |waked in tin=,dirrcli,m -I linD' t'rntil;d ;tt,_[,' hH,,
thc carllL :%_kt'tcln ot lhr r,ttli;Hi,,n paltcrn h,r ,L

tlons; the particular fl,tm of tint' integr;d._ cncq)un- vrrl=c;d dipole ..urcr i..I.m, m I'i_tlrv I. Thi.
tered permit,_ interchangc of the inh,grati-" and dircc!h,.,dit._ of the .,,.urcv i. iinJ._rt,l,d _h,'l. _',

differentiation ;teps. Ih'ct;,,.- fr.m ;¢ ..uh..url;tt', In.llltf,tr_' ;II,' ,.qtll
The half-._pac_ ._olution._ demonstrated Ihat ._ith'w,I

interference patterns will be ob._ervcd in thc tic'hi

strengths evt'n whexl there i._ no ..,ub._urfaee re- Two/,iv, r t',trlh
flectt.. Thia is readily seen from t.quati.n (2_).
The fields st the earth's surf&cc are cum[m_.ed of Tlw a.al)'sis of the integral v'q_rv..:on- f_,r the

two propagating components with ont' having tht' two-la._ t,r earth problem is carrie, I ,_ut in :_o ,h!

phase velocity of the air, and the other the vclo¢- fere.t way_, The dtl_th ot tlw sub.t'rl.to' bottl_
it)' nl the earth. Another important fra,un' of the dar._ and the eh,¢trnmagnetic h,,,.r,, .l _ht, fir-'

half-sp_ce .,.flutions i_ that tlw tit, hl_ near tile h,_vr ,h'h.rmim" which aplm_zLch i,. nl,trt tn.,c(,i]
b(mmiary fall off as thr invrr..e ...ql,art, .f the r;uli;d 'l'hr primary method .t an;d._.i, t_ t,, trt,;tt ,'h,
distance from the .,.mrce at di,_lam','- greater than tir.t t:t_ t,r ol line rartln .t. a h.ak._ _;tvvtgu.h ttld

twoor three wavclcnglh_ fr.m tht..ource, u._ nnornn;d m,.h.a.al._.i- I. ,crt;thn (':t.t. th,

A convenient metlu.i of intcrprcting thc ._olu- me.h. ,tlt:tl',_i. i_ cumhcr-ovlw, ;u.I tl,:., ,,_-,-

Table I. (_qticien.t 6,(,,) h_r hslf-,,pace earth _flutions h)r vatioun dil)_)le _,urte_.

}let ¢1.
_:utce t,echw n (it (;s I,

Yeftica! ),|agn¢li¢ . ,, 2_L',,h,,

Makquttic ll_ (} T.,(,,) - t(G, .) 4- (,_(,,) cm ,,) k: _".

Vertical Fleet tic 2H'd,.,
:,.,H(

Electric II; O .%d,,) -_u_ ,._ 4 G_I.) ¢,fl a)
Dipole L' _''

Mar,.wti¢ 2tL,,=.,,

I:,,r;/,.nhd I!_- 0 S.,,,,) -i(G_'(,,_ t (,:_,,) c,., ,,) k_ l,

,_klItgnt'li¢

_;,, - I)f,,,r,,).%d,,) ,, , % 2tL' :,, '1.._I)il_h: %f,,_m'tir I -t G, ,,, -* _, ,,_ ,,,n ,. r,,)l
II,. 2 I',,_-) l 11, _ ,'

l.;h'rlrl¢ (l l'.,I,,l I(G,',t,¢,.) I (;',,,,) ,,,I ,,}
I l,,_i/*mlil ll.v k,

INl_'k' 13t'¢lri¢ t),t l)e,,,',,)_,,/,,_ /si',+',_,. ¢ _;,,,_

II/ )1'.',,_ l,,k' _(';P

' JiG, 4.,
l)¢t;niti,m (;_t0_ d(:,(_',, C,"

d'#. t _. tl#i, t,__
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yiL'hl m,,rt, u.,_fuJ rL'sull,_w11L'11thv i.tvgra;..Lrv . ik_ r

_lved 31q)r,,xlmatrly u,,i.g thv ,_,hil_'-p.ih'. Ih, _. vos_) 2||' J '_i"'_#_m_.(_jh,,(#,) (_I)
method of i.tvgrl_tion. - "

"rhr variL,u.,dipok ,,4_urcv.m:Lyall be tr,'._t,',l . ,.a....., ._ Ill(kip _;,'*Bt ),@#j,
in the _mc mann¢'r.Y.r the purl._r .f illu_lr:_t-
ing the' m_'th_l _,fa_ml._,d,,,th_ h,_ri.:_),_tal_'l_,_'tric v,l.,rr the h_h'grali,,, v;;ri_d_l,,i., P_,a. ,h't_., '1 i.
dilw)le _)urce .mluti.n. arL' u._'d a_ mn rxamph.. ._,l)l)_'nclixB. Thv .i.Kui.,ritir_ ,,f thL.v,..Ih_'.,.t.
"The x- znd g.com]._nent_,_( the rlt'ctriL ]left/. bo."n4 r. detvrmi._' thv II.tlur,' ,'t" Ih¢'_-h_ti,._.. t,,
vector in the _ir |_ thi_ woure¢art' given h)' vqua-
tio.,..s(13_ and (141 where the c_,et'.,c;,,nt..I,. an,t

,', are li_ted in Table A-2. II .7'_ cl + R,._I)
For norn_| modeamzl)'_i_,equstion (13) i._rv- mi,_ I + _) = (.;_)

written usin_the intqlPralidentity [equati_m(2 l) ]. | - ._.m_A',.,t
The components, of *he Hertz V_'tt*ff"at'(' KiY*'fl 1_) :znd

II, = 211.j..inezm,.(O,)[I + b.(O,)l ((q)) m,,_',,_
t

• ,"_' .... '_11._'_ ,.i. (P,),I_,, F('Y"* - " I).t,,T_.( ! -+-X,:_/).%,( l +-Ik',._t)

L_,_d (l--.Y,,.Y,_)l,I- X,,,_,.#)
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(721 -- I) th,_'t,_YI ."rot 7",,_ ,.,.7",:_l
(1-X',o.VI_,_)(!- Rt,,Rr.,d) J ' ,....

bay," brand, I)oint ,, at Ihr t_o cr;lic;.tl atlgh._ .! 'l'ht. po..ili,m., _,f lht' I.,h.., ;tnd hr:mch t,,.llt'. ,_

lilt" t_._ I ' ndarit's in quu...tiolj. In :ld,liti, m. :IH' o)lnld, x I,la_l_' dt'tt'rv'n_ll," I!w _a_,' Ihllllr,' qj_
ecluat[o. ,.,-) ha.'. _n in|lnitt' -,t.t of ..hut)It t.)k',., the' notLll](,ll,.. |t) _.'lltlIL|l()ll'.,('_(I) .I.lid (,{I). 'l'h(' II,,r
and (33) has a doubl.', infinit_...ut of l)()lc,_ (m e-el, real t_lo,h..,olut i.Tj. ,m: (,htahwd I)_ d_.u,rll_m_, it,,

Ri_Jlnilrll| ,urf-',¢c. "l'hc,L. ])oh., itrt. deh.rmhlt.d b\ t'ontour q)t"inh._rathm (' t,) (". :l.. ,.(.h,.nl.itw.dl;

the normal mode e(luathm.. Illu,,trat¢.d hi I"i_zur,..:, 'l'iw itl_,._r,_! Ir¢,m - (_ 2_ ;

1 -- /_t0/_t,!J = (). (.'_4) I-. id,'nt;call 3 /.cm .Xh,m( tilt' hr..t i_.tr_ ,,I 1" lilt.

&_d illh'_r_tl iS Zt'l'() _.lll('t' lilt' inh'gr:uld I- /t'rt, _, ,ttt_
lilt' st'Colhi part ,d" lilt, t';llllotir (,t lht. Ililt_.t'.tl I

! -- ._'lO._?l?_ = (). (.{._) /.crodut. to tht. lt,3y)llllt.tr 3 ol t}lt'hll,'gralx, l;ib,,ul ':
0_ =_r 2. 'l'hb, rt'.,ult i-('ttl]llll('ll )ll Illtld(' "llt_l_X"1" ]¢'

EqUa.titms _34) and (35) -'re the 7"/'.":l.tl,I 7"M Imr atl(I it;f, .t widt' r:itlgC of al)l)it('.tti.t_. :l- ,];_t'u--t',i

real mode t'guations, respectivel._ J¢tdh arc trim,, in dt't,til I)x ]¢rt.khm.,kikh (It)¢_()! 'i'ht. 11I|4"_I'A]

cendental cquation_ with hltiniLt..,,et, ot r,,ot., "l'l_t. ahmg (' i'.eqllal it) tilt rt'-idtt,", ol lht'i)oh'..,tr,,-.,','

rt.latlotl hetwcen thr ilorm;t] nltt,dt....tilt] multil)h, in (h.formhlg lilt' ('()ttl,_Llr t,, ( ', I,IU, tl,,' ;a_tt.v,r.d..

rt.l']et'.hm_ i,, readily obtained I}_ v'q)anditlg tilt' ah,ny, c_tttour., ('= and ( , _hh_t lull Ir,Ht_ _ t,:.

dellOlllillIltors t_] t'(jU_l.titHt,, (._2} ;.i.iid I.._.g_ illt,, :trOlllhl tilt' hr;tnt'll i)mnt., aud J_.ltk I,_ t I t. Tht
inlinite gt'Olllt.tric ..;t.rh.._,.For t'Xiltllph'_ t'IHllpttlH'l)l'_ tfi fht' l I, rt_ _,t'( l(_r ;it', t_ivt It ill.'

"11/2 C' ImO] rt/2I

' i'
I :

I I
I

i'

t__ re0

' lI

' ' II: I
I
I I' "

I"lt;. _;. I'(mlldt"_ O_I,huw ,,ho_illlZ h,,w intr,_lall,,l_ Colll,_ttr (' i_,m,_,lilit'd to (" in ,,id,.i t,, ,du.t_ t_,,,_,11 m,.h

" ] ,,,,hitltm,, Hr,tnt h l,.iltl., drn,dt'd I,_ ,_,,lid (ill It'.,:ttttl t},t, p,,h., I,_ ,,,ill:Hr. {

t

g
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Table 3. Approximate steepest-de.qcent solutions to branch-cut integral,_ for .;
normal mode analysis of the horizontal electric dil_Dle.

I, 2d.'_.,l_d! _- h',.:*O_,,)/'l_ff,,,I)_/_'" "
_k_ - /,',')(l -- R,,.,l#;.h'_'O',,,)l_ll'l,_

I= .z_.,_:,,'l _,,,_,_tt - cot ,,,, la, a_,_ ..,.,*., _,,,d ,;,' " ,," 4,,' :_

I, ,,k, - k'd(1 R,,,ul',_)d,a',:_UI _,: t

, '(,_, _ _ ¢ _,l, ',¢ I ' L,'I I :

I= - 2(k_ -- k_)' _ t. ll'p': -_ II _,=

Co._ ¢_':(I - Col tt,i fall 0t:) t(:t(0i*) "l.o
2i/.'f " k_)l/=ll*/J'

/,'o L (l- .\'_U_)hl - R,:_ =

,, ('_(#:o) 4i'),,(1 - ),.;/-_,,,.%:7';_Jm,,(! + .X',=IJ)(I - h',_l + _0,(l .k',..,i'_(I_ /¢,_)] _
k.(I - ").0il - .X'=_)_tl -- /¢,:_)_

2i,_,,,1",,,_¢,t_."'_It'),. I_l_:._,'.,(l _- l',,,_ - R_,¢__) + _,=7",,,(I t .%',,d'i V,,,_)I

/,',.{1 - ._,,)_'stt -- -_..,d":hl \',_)=(I - R,.d'J)=

k0 . e k_ I i 2d * "*

•_lli el| i *r d "= |;111 ' ' !
sin _,, 1,_ l,, t ,, .

7
{

# al_ea' ..... '"', (43) with K=<K, in case (c). In all cas_.s ,5t.-: hi,- M_

i_ assum_'d since permcabililies ,,f bulk earth m't
where _ i._a poh., defined b._ equati.ns (34) and teriab, vary little from Ihc. free-slmce vahn'. Tlu,

(35). The branch cut c,,ntril,uti,,,,_, I, and /,_, p,,h.s lit. ,,n the li,,,._ ]/¢,,,R,_I I = I and [ X,,,\,.,;]! "

fall off as #-_ with no exponential attcnu:uion, = I, with the dt',sity of di_trilmli, m of the poh.s

while I.. and It fall off asp _ and art. exp, menthdly on these lim.,_ controlled by tilt' _lal, Ihickn,.-_ d.

attenuated widen the earth is Ioss.v. Tilt. ampli- l",r d small, the poles are widvly ,,pacvd with mo.-I
tude_ of the modes are largest for those Imles ill of them lying high up the lines near tilt. imagi,mry

the vicinity of 0_. This effect is rdatcd u, the 0=axi,. l"or increasi_lg d, Iht. pole.,, m.vc d,,wn Ilw

modified dirt'ctionality of the source as discussed lines toward 01 = r,'2 and are m.rt, ch),ely packed.

for the half-space liehk When tilt' earth has a llnattenuated modes occur only when the #i' lit.

,. finite loss all terms in the .solution ,'xcept la and on or clo,e to the r_:al 8, axis. In ca._e (aL Ill(, p.h.
the first term of la have amplitudes which decay contourslieon the re;fl axis fi)r_,.<. 8, _<w',2; IIIW.l

" exponentially with in('rva.,,iug Ic),;sor inen.asing,I, lulluated n_odc.,, can I,v exeil('d when //_ vxcvvds

The positions of the p, fle,,, in the eoml)h.x O_ ihe critical angle of Ihe free Slmce earth inh'rfaev.
_ plane fi)r Ihrcu idealizvd nl.,h,ls arv illustrated In case (c), Ill,, sial) forms a dieh'etric w:tveguidv

i - .. ,cln'matically in l"igure t,. The earth enn._i.st.., ol IL wht'l_ II, is grealer than the critical angh..,, ,,f both

perfect dieh'elric ,,hlh .w,r a haff-.-ivlcv, _xhi('h i'_ lloumlariv,_, i.'.r both (a) and (el, the m,,h',, wilh

a perfect ('o0duch,r in ca._t' la). a perfect dh'lvrtric real 0_'h's, Ih..tn the largv_t crilical ;u_gh. art' highl) -:.

with K_:> K| ill case (h), athl ;1 Iwrfi'ct dieh,clrlc damp,',l due h, em'rI.w h.akln:, (,lit of lhv ,,lah I=_ r"

F
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II'LG. b. _kt'tchc,__ffcomplex/fl-i,l:tn_. ,,ho,_itl_ l_,_ll, m,_,,I hr:u_ch t)oit_t,,mul i.,Ir Ihw,_for ,&,gmph. tw.. lak *r ,;,rib
c_._s; c_'_e(n.), diek,ct_¢ _d;tho_,,,,r=tprrirct rovtdtl_.t(. ; c:t..u (b). (lit.lt't tliu _l.'d_(wt,r dielcclr=r h;Ot _p;t_'_.,,_,htt

;, K=> Km;c:.t._e(c) dirlcctrir ,.lab (_*'r ;¢dh,h.¢trir hnl[ '.p;u'e with Kt< K_. The .h¢_h¢.dli.r._ ;_rr ('_mt_tlr_,whrru
¢ '=._.
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t';J+Nt" {Ill, n() +.ln;|ttt'llu.;t|t+d 111q+_l.. t'.lll t'xi+.l, '.dllt'e '!'ht" Jh.rl,, vt.('lor l(mlpon(.Ht_, t':lll thvu Iw writ
t,0lt,rg.xi..,conliml;tlI.x lh,_in_ ,)tit tfl'flit' slal) into It'll ._-
tht' htwer htdl'-._p;tct'.Tht' ('ITt't'1 ot a lhlitt' to:,.',in

II

till" ..+l.'dllllt)Xt'_+tilt-' poh' etMlt>Llr, uI) aw,ty frorn II, -: I., -I'-I.,, ( l')J
tilt+' l'l.*;t] ,tl.Xi,_, :tltd +'illmodes h:tx++,a finite ;dtetlua-

l+Oll. Tht.+,,t:,m.lt'Is tlemqm...tratt, tilt. gt'nt,-;+dl)t,.,_i- and
lion .lld beh.vior llf tilt' -ingular itt,int,_ in tht' +,
complex plane..More detailed ..tudit',. ,'+.re givt, ll llz= I., +'I-I.,, (50)
I>yWait (It)?(I), l{rt,khovskikh I,lt)()ll), and Bud-
den .gt,I). whcre L, and L.:art. Iht" hal(-slmet, earlh ,+oluli,m,.

Tht nt)rmal modt" al)prtmch is m<_,:t,st'ful wht'n di.,,cu,>,t'd e:trlivr, and L.: :tnd L+, _ivtm h>

tilt. distance frtml lilt' _ource is grcater than the +'/,'1 " ,
depth t)f tile bound;_r.x d :lml whetl Ihe earth has L.. _ / Sill (llm,,b.(01)
a vt'ry I<m lo._,,. Ill ,I Io,.,._ dit'lt't'tri¢, tht" COlnph'x 211"d,. (5,1)
dit'lectric c.tv_tant is h"tl P i |,tll <_1+where K' is
the real ,lit'lcctri¢ cotlstant and tan 6 is tile los.+,, .+.,&,,z..... +'"¢/l,](/,'tp shl 0t)+/fl_,

tangetlt, and lht, ,ttlt.ntlation di.,,t,tl+t'c ill frt'e- and
space txavelt'n_th.., ftw a ])l;.I.Ilt'W.tvt' t-,

ik; L" ... t

..... J+ sin 01m,,c,,(001 (44) L, = c.s + 211," (.+;2)D t_/K'-t.'t n ,_"
t

when tall (_<<1. I,,l'ht.n d approaches the uttentla- • e "''z ..... '"¢Jlll(k,a Sill OO,/O,
lion dislatlct', tile mdtltion,_ ht.gin tt, alJpruach
those of a Io._,_x'dit'h'ctric h;+.ll'-sl+aCt...Xn;tlternate descrilw tht" t'lTt'et of tht" ,,ull,urfat.t.h.ulldary.
apl)roaeh to t.valuating tilt' ileitis x,.hcn the dis- 1.2+.lli(ll.t Call bt' ai)llr+ixiln:tlcly evaluatcd ILv
t+.tllt't'fronl thc,,ot|rce is less than d, t)rxxht',d>_l), tilt. ,+addlt'-iioi,I mt'tht,1, which rc_ult_ ill tilt" gt"
is desirable, _ince lht" nornlal nit)tit' dl)pro;tch is t)nlt'lrit" (,ptic._.,,olution. Sinct" z is ;l'_'_tllllt'dCIoP,t' l+J
Cumbt'rmwflt" ill Iht'.'+e CaSt's. zt.rtt thr,_t.tghoL£t,lilt, t'xprc.,,,i.ll

The intt'gr:tl,_ can I)t' approximately t'vahlated
b)" tile .,,addle-l)tfint metht,d of integration _ltcn dll,,(ktp sin Or) (53)
multiple reflections are not strong. The field,, cltn
then be t'xprc,>t'd-'t,, tilt' h;tlf-mpact",,ttlutitln ph.s ill tilt' iutc_4rands may Ii,' regr<)upcd II_,ill_ tile
;.tCOlltri|llltl,)n 1rot11tilt' .,,ull,,tlr[ttct"})oUtldttr3 . liy 0.',ylulfl(,tic t'XltiLlt_,ionof lilt' J lalikt'I l'llll( tioll in
regroulliUg the cot't'lieit.nt+,,b, ;tnd+', hi tilt. form tht' manner disctl,_S,vd hi ,,XplU'ttd_xH. L.a and I._

tht'n (tmlttin till, t'xprt',.,hm
I

b. = R,,, + b,,0t, (45)
e,*_,a ..... .,+a,, .... +' -:: e"'us ..... '_ '"+' (54)

1 ._'t,I7',_1 I

CO --" +2 ("Yet -- 1) /'o "}' t'td, (4(>) ill tilt' intt._r;md, wht'rv Ra=(p _ t4d_ '_ and _
0,/= tan i (p'2d) Ill lld.. form _,t i,, lilt' n;uhlh' *+

+_ bl . 1',,,7',,,_i, (-17) l)-int ot tilt' itltt.Krand and is till' gt'Olllt'llie ,q)ties i
+ = (1 -- RtuRv.,¢)' ,lirecti.n ,it ;t r,kv relh't'led fr.m tilt' ._t.bsurf;tce

lmundar 3. The _tthllt'.lloint Stllutioll,, of L2 and
I and I,t, outlined in AI)pe,ulix I¢, art'

L. " 21',, (1 - Ri,Rl-_l)(1 - .Y .,.\" l:._)
(4X)

_' (I -- RI,,Rj'.,I_)(1 "- Yu, Xl',.lff) J
L.

v;
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Radio Intedorometry: Port I 571

¢'tlA',t I- I" |._xl)rt'...,,i,,lt,, (_) ,ind t._c,_ *'_11_hu I,)ll'rllr,'h'd _u',

I.: _ II'H,,L |I'L_") - L/,',A',, tl"'Uv,,) h:_vin_ rt.pl_lcr41 tht...,tll)-urf,t_l. I.,_u.l,,r_,. I,_. ,,tl
(.%5) h.,_t' ,.,.urcL. al tv, Lcuth, d,..plh I'1.. h.:t_,..,.ult',.

Jlil'_It riLdiiltionl).ttt(.rn_hich ,,I.I..d..iith,.I_'
-F P'(n,1)_'(_t(,.) , d_'cti.n_Imltra._mi._.,,i_,._,..ll}_,.l,IH..,]t)1_.hqqll|

d_triv.,, _u_dthe' la_'r thi_'km*...

p.tld ltl t_L)t=titlli114lht'..,a,hll,'I..HI ,,,,dt=t_-..lh cl

t,,_,/,,,_ lt't't t)l' the I_dt '', ;Ind Iff,tiitlt ]_,,i,tt. tl;t_ b_'t'n
I._ :: t'l)%l_,_ilto,i IIt'g[t'clt'_[, _uch nt'_it'Ct i', _ti,_ltllVtl ',%I|t'11 |11,'

II'R,_ ly_yultd.tr_ I., (It cp iLlld th,' t.,tlt;i ]t.t_ ,t "_l_lllftt .ill1

i it,-.,'Ihi',i'_i1[tl.,tra.tt'dilll"=_ur_'; I',,,_bt,t*t_lh,
/" [(1"(,_=,,) t._()) _:tddh'p_,itltt'_'_tltrtbuti_.n,th=.tlttt'_r.tllt,l|t',,lil,_ttr

• _,)U_,_)"- 2/,'tR,_ _.mu-t h,'dcfi,rtm.di.l.th_.....hlhI,,,_.I(.im,ur

I'.'l'hvl)_,-ith-__,II'hl the'r,,,,q,h'_#_ Id:Lt_t' *'.
the ra.th, _)1thr r,t,h.d di..t.ul_,t, I,, It.. d,.plh ,,I th,'

whcrt" I_,_uml.try, p _,./, In _=r,l_.r th;¢t a L_tv,'_ l.)h',_r :

= _ . : l)ri_.nrhIX.hi b*'tr,,_..,rd_l.. (' i.,,I,h,rm_d t(, I',
1) _lll,,(ll,l)hu(tl,l)I . ,,/* I,......",,,I_i * (._7) (If,/IIIUW,I.t'xt't'l'd:tl_l'rl_llllv.thll' _l,l_hi.,ht,'r

;ill,l mim'd by t'_iu,tll*,ll(IIll),_ h=ch,h'ti,..lh,,,,m
li_LlrI'.._ili¢,,p.-_d lllll,e,,,lht,r.t,hal,li_l._.,',

I I I

_A = p,t.U,,_),,,U,,,)¢'¢"t''_'......''_' . (._S) ff_,m thc .,,,llr¢',';itwhi_'hIf.._i,,qul,¢rl.,hH i, #

=_/2 lm O| "/2

II :°

I , I
I ' I
I° °gOo • I

,t ',
I

--._---I_
I .o
i e 130 ,_

! oo
I ooDO

I °°
I I_; 7. ('_)lllp|t_[ttl_}.t_'lt''_h,,'*__ll_dt.(_trlll_lltmlfl¢,,tH*,llr ( l,,_ul,llt'pm.t t't_lll,,lil|' .%,Ii,It'hclc',-" hr;tvl¢'hl.,i*,t.'
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Radio Interferometry: Part I 573

.attlri"_,ithl.l'xl)rl'.',..i_m_i. _i,_';,_,{t,_'r_._{.'_t. u.wfu}rod!,,th.,,_t},_l,,.,i,h.,,u...,i,,..*;L_,,{{,l,,lli,_.

l.:'i;l,.,{,}i'.,,)Ithl...,i_';trl._i_,'i'11h_ {';u{1{ ra,{i,,hil,.'r{,.r,mlt.tr)",{.il;i_,';d,',il,.hIi,,i,-Ir_{,

'1'{,,.h:dl'-.,p:icc_,i._Iuti,ill.,l)r,_'.l.h. ,I milh*,{ ,,I 1i,mi.h.l.r,l,,,ikt','li{,i_ :dI,h,,.',i.L,t,-i!=,'.,,,,,,

lJ_ .rt11{tl]11_till.' l.'{l'L'l.r]L:iL{{,.,,}>crti,+',h,r ;th.tit ,m ,hi.+_.t,.,.lt.,++th..,'al+.a,,,!h,,v,,,.,It,,_;,,,.l,,.

_l).'ic._,,y.,tronRd,'l};Lrhm.-m,m l}_t.h.di-.{_,,,','t.L,,_.t.,ll1,,lh,.a,,.dy_i.,.,1lhhi ,l.,h,,i,h,l_,,_:.'

W;I.VI' II.'IIl*'l'(i C., ;.tr¢'Rti},lrilH('rt*.ri'i1¢,.'{illth'rI'1 ,il-l.l.IIC_',..,,,'1 i '_',;tVl'{l.'IiE|h,¢'.itt.iI,.l].,*,,,,Hi{,.Hi

ali,I;ip"- 'i..t;t,'._'¢'({t'{i,.i,,{_'llc*'_h,,Hc,ih'th.ltr,'- .,,,,,,i,hd:il,tk,,,;il,(hl,.r,i,lI'r,,}H,'Ill{t" tr.,m.hl

l]ccti,m',l'r,,_ dt'{ithar¢.h,_{.,rla,,I'i%'}i_.,ifl,,. t,>r_.ir,l IIlh,',h.clrlt.dpr,,l,_.rI'_...,,_.,,,,il'r_

rc{]t'¢tk,ll..,fr,.,m¢l,,{,th;ire.,hl_.h, ;,}mr}..:.,mt;d,iil,.i_,'_,{,.{,¢'n,},lit,ruliHim,l{,,*'H"'"'",,I,]-{,,'5

l),)u.,l;tr_hlvh..ctr{¢:;d{,r,,{i,.rl,,..,th,.{,,,h.i'_i,_r,,t ..,',.,.i,d,hifvr,.m[r,'qucm,',,-.¢.,,i,ih.,i,_ I.,v.ll,

the'h,.{,{._..}rh.-¢,m.i,l,.r:dd._l:,,r,',,:H_},{.','._,h¢'ll ll,i.cl,'lHh,{a -llh-,,,rhl¢',',,,htl.,_,.Ir,,l,,.,i,.Hi,,,,l

11¢irm,i}m,_,h'...;tr¢.i'x,u'h,.,{,|h_.ti,.h{,tail,,IT;i.. ,d ;t',_;iv,'l,nKt}ll,,m,i,P,_.,',,I'h.''i,

p ' : w{lh i_._ul;irl_,.;itiI,_,,,thr litl,{..Irc,i_,th.,
%_.{tll([i.",|:llit(' irtHll tilt'..,:,[{rcl' AI'PI.NII!IIX.W..(,i)lI.#.I¢.II.'NIN ^NIl PAIl&M} l1.14'_

'l'h_'th.:itm¢'nt,_i',tt_,_l.l.,¢.r,.alth%',{t{llilalli' 'l'ht',i,t.fli£1,'td-illthe"i:{lv...r;li¢H,r, l,lh.h,I

}:,,}|ll;_{arti'.,ll,ln1,)l_,'li,',_u._1_,',H,t,.Hill{i,,il11.I{11.'|[t'rt/.vc.('t,_i-{,,rth,._,.trlm{4{i}),,},,,Hr¢,.

...,,lill1"Cl.'_{', ;I.,..',,il-{lll'r;l.lil,.'..hi_l,lih¢.Ithm,,tm,,..t ;Jr,",_hl.um',{h._ .;Hi-I_hiL_lh,.l,,,,H,,{.,r.,,,,,,h

real,..I,+{r,mmt'ilt.,.Tht'..t'..hlq,h'm,,,l,l-.iii,l+ht' t},+ll.;It.. l),tt,d; -,I %%'Hh,mt ,,,,,t,{q,,,t

,l.i)})rt_,,im.th.._,lut{t,ll.,,,ht.ltli¢.d,h,. ht,_t,_,.i, llr¢, llllt;ll{¢,l},|{1¢' ¢'i,i,il'l¢}¢'llt-:lrt' ,'klr¢llt,!% ,',,ml,i,

vi4{i'{n.i_hti,,t,ithr li,'h{h¢'h;i',i*,r,,,lh,'r,i,lii_ ,.':lit',{,'xllr,'-...,,m-,,_l,kh h,.._.{h, ._,,.,.,I,$ ,,i

h_t_rl_.r,m_,.tr_.,{,{i}w;Hh,,iM_.tlm,{-,t,,.i,,.,:r;,h'{).,ltlali,_n_;¢1} thl,,u_,h(hl a,,,{.,h ,Hlh,-,,l!i,,

c,.n})'ah'll_,{,}-tr_m,_;t},.l,,rlh,...i,m,.{,}..irl.cur mt,:rllrct{lliy.i,'.it}._Illtl,,-.,._tl,,,,,lh,....lull,,,,

rl,l|lL_iti),li..rmv,...l{_,ttmlll'h,ci..I(_.,.1HI r,itt_}t (,,r|I}¢ (li¢'ll]t'i_.'ltt'.,.trl.|,LlltlIJ{,',{,;LH,l,{IIHHt.t|l,,tl

i.tlilldi|ipml.',i,¢}tlll,i;tr}i'-,HI |he',.,,lltlti,,tl',,l- i¢%- tl..,t'¢i|{lrcIkl_}li)t|||hv llii¢1_.(itIll,h 'd I,d,h,i,',}

th'm¢'lvhlIp,,rt;init._}.,,_.th,'}ir,...¢m,,.ill ,,-;life.r- Ill'l'ah},'.'\1,th,'{.,uI,l,,r>c,,,.},i,,,h..1,,,l{,,

ink l,yhHh,mi,_,.,.'}th',mth,. ,;,.rt},i.,,i,{r.i.li-{{,.rl/,.,.,'t,_r..;ire}i.h.H.{.T,ll,h._,'.i},,.,.,q,r,*

c;t{|)'ah,.rthe.li,.{,{-;itth,.,':,rth'--.tl,i..*''{'ill...,._h.i.h,l }h,.,_(_),/,_I_},;lli,lr/.\).,rr}i_l,,It,,r

{_ri_hli'm..;li',"_irttlal{},mli,_..,ihh.h, tr,':tth_ ,l _;t¢{,,{i{.,h'..,,.r,,.l,:_,=,.i,i;li,,,,,,,ilh_',..,>{,,i,,.,-

_l'nL'r:llm;tnlwr lh,.,,ri'tii'al}_._t;${=m,,4irl,.Xl.,r{-h(,_- _h,'..._mm,.tr)h,'t','.,',n1i,,,'},it,i,.Hi,l

ml'nt_ .'..it'L'tl|t¢_ it,1° |ill' llli,'.,|l¢';t.,ll)hItwthsi¢i ,_t m;l.kgi*'li¢ ,hp,=}¢' _-,,ur¢'¢'_intlrth;Hi;,im, 111¢ r,,h .

stu,lyh'l:H,P,_'pr,Jili'm-.'l'hi.,_,,rki..pr,...,..th,_lfl.ai,l.1/,,,ml.c;l.,I ri.:tdi{_=dH i,,,I{,_.,,hH,,,,,
ill{)r,_r¢'-,.,. h,r :t m,t_it,.lh,H{.,},'..,,tile',{l,,m th.,l,,i.Hi

'rill.Ir,.l..l,:tt'_.,._;i_,,.lt.,_lhllr,w],h',,l}w m,i_.t a.llU,_,;l},.i,l,.h_Ir{¢,hl.,h,.,,m-,,.,,,,,{_,,,v,r..,

"|'ahle A-I. llo.ndary condi¢i,m._ G,r I ler¢;_ lect,)r_ for _ari,.i._ ilil_lle w,llurlCw.

's'crth.:H'_|.,_,wticlhp,d¢, _l;,_,,,.I,t I/.ll/- |l,,,ll'.." ;,ll_ ,,ll_,"

%'i.rli¢:llFl{,..*:Iricl)q,,,),, llk.ctril h If:,- A',>,II'/" all_ ,,ll:,"
t%'l':llt ,l/ ,',Z

_..',,i_'L,,,," ,_,,_,_.,,,_"
lh,r,..,,,lld.%{.'t_.*'l{cIhl.,l,'

(11,_111) M :,,_,,,.'I,i ,, ,lll'_ t/0, ,*11'_"
11' II' T' il ,11, ot/ ,*/,

_ _._i,',-_.L,,,'," A ,,'._.,,,'.
ll,,r,.,,ml.'ill':l,:,:Iri¢:Ilip.l,." l"k',Ir,," ,Ill _ ,'II"'

i ,III':II) WI"II'" %" II"' A,, fl,.,
,*/ ,I/

+
i

i
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574 Annan

Table A-2('-'). Cllel_+.'iem.s ,s,(X). h,(k), snd c,(x) much m.rc -'tl,p.m'ltl _h,,ll !h¢' phmq' _,lw"

++ for verlicJl dilxd¢ _)urce. .,|)_.clrtlm tlqP|;t|lt)il J.'.,U'.l',I TI., I.t m ,.f Ih,' pl:im'-

t+ I _,, l.,_cr x_.:l.Vl.._l)¢,cIrum U,+rrl lhrlm_h,,tH i- .l_l.lhl(',l h_
_+ varth Ilalf .ImlC dl'fi+fin_ Ihree ¢'mnl)h.x ;i._h._, #,,, ?/,,0,, .,.I t r;m_

_' /¢,,, t A',_ I'ormin_ the. ilHi./M;tti,m _:m:,hI_. hy ..¢.lti,l_..

_ : L',)._in0,,= h,._ii,fl, /,._h,#. (ll 11
A',oR,.+d

7

Vt'rlic:ll ,Ii 'h, ll',,l 1"hl,':ll|_,li'O, i'_ 11"+1'41+II lh, r,'ttl_,,i / .l II ill lllu :

R_oRI-.d reghm -d </. <'l),an,l/J, z,, lh+' rv_i,,./, - +I 'l I.

._lllgnt'lic u.l+,ixc Ir:uL,.fnrmal+<,i+ i- +ii-I ;m ,'xl+r,'s,.t,m ,_I +

i ,_,,,7 ,,,R_+d t,;n++,ll'+,.,h,w. A l)lam,-_+ ;ix, H. Hh,Id Ir, ,ill t lll rt _+I'ii+' I)il.'lc '+.' t)
0 A'.,Ri+.d _._>()Lm the t'arlh',..,,tlrl,lt + ;t| ,ill +It F'TL /+,i t,' fh,'+: •

++ =-Ixlm i,, rufract,:d ll+l,i nirilium I ;it .in ,in,_]++'_i, ,

,,1,,,I',,O/,=7'i+: and to tht' i-axi,, u.ml i,il,, lli4'll[tlnz +l.I+I;lll ;li+glC
I/ili _'i,l

i 'l_ " A',,,_l.'d _, li.', {lluslratt'd i. I.'i_ur_+ II I. 'l'h_' r,.:ld,..r +-

'l'h=' _.xpr¢,,+.,,i,m._I'llr th*' Ih.rl]. x_.cl,,r,, ht i.,_+t=;=.%,,__-.¥_

i ,. %, ti, lns (II)) Ihr,,ul_h (II4) Ir.ui,.l,_rnl +i., l,,lh,w,,,whi'rt,ihv II_ I+,,r;t ,,l,,rli(',il ,hll,,h hm,l,,'ellih,, ,H
;t._ ;Ln i'%;tml)ll': '

Vcrli(_ll t,,.%,#I I
%',,,X_,_

e,,,,',' ik,, jl
1 l.:k,¢irir II_+ -+ + ,qrl O.++,,(O,,)
i +I'R 211' ill _+

-+

+,,.%_.%',ll
l)ilm,lr ,++ II I

1 -- ._+'t+,%i.lilt .1.+£+...... li<if t lli//iili(.idtl +_ill (/llJd/)ll

_,.I,lllll_lJ+_l'll Thc lllll'lrlllllill i'l)lllllllr {' fllll._ flillll - 71 ',..I t I_.
iI I _+,l.%i'i,I

.Yll, l°l.ilt Ill --l/ _ ltltlll_ lhl' rl';ll U, All'+ Ill I I ;lli_l Ihl+ll lti

1"12--7=0,-'i,_ lllu._lrah.d hi 1*'il4iirl' II-J+ I.l_r Ihl.

liil_ll't 0+, lhi' t'llril_iul (' i_ ,lldliilil.<l I'rnln i,ltllllllllli

Tht' vilrillu._ llarlintl.li.r._ li._l.d ili the >olulhm._ art, (!1.1). Tht'/', Ii'iili_flllnl In -i,(, cu,+_,, _,lhl'rt. lhi.
Iistl:ll ili "l'al>ll' .%-.l nl'Rlllivl' ._ilzni._chll._l.li iii i,rdl.r In ._liliq'y Ihl. riidi

The i.lpli..,,.Mllli, liu_ .%u, /IP,;i anll T U ilTt" lhe #ilion +lmllilillii..t, liih.,lltUlili_t I'nr/'_ in lhl, I,'ll,._iii.I

l+'rt_nl_l lllanl.-wavl' rl'llecllllil llrlll lliiil._nli_._illn +o_tlici+ni+, nf Tilllh' _li..! rr_iilt._ in Ihl. nlllri, fli-
el_eiitleli,nt._ The _uh_crilll ni_llllhm /7 hil._ Ihe fill- nlili+r illrnl

hl_inll nll.illliill_' -ull_¢rilll 7 ih.noll.t till, nli_liunl

fri,m wlliclt th,. ,,l;u,,. ,i;iv,. i, il,+i,,eli, im lhi'lll;uie (A"_ ''_' c,l._g, +- ('If' _']' t'll+ #,: tlllunlllir.x lil.l wL.cil nll.,liil i ;uill #'.I",,r i'xanlph', thl + K i ] \,if,/

._uhm;rillt, tll ni,..+lll il lll;lill • xl;ilii, inchh'nt frillll X's== • hi-liT ,_+++ i/i , (Jl .i)

,he ,,ir nil lilt. ,l,,un,hiry ,,,', wi'en I hi' air ani, tht' ()c,,tO,.t-(),',i+fl,llr._t lii,_,r ,_i l}il' i,illlh. Tilt. Ii u linll .%',iil/e Iht. /%1 ill
retli.'_iion ;inll trlul_nli._._i_m ¢'l+t'llifii'lll+ re_lWC- i

iivrly i,_r ti T.II lllliile wlivl,; lilt' _,. iinll .%',#iirc whl're !111,"1"+%!ri'll¢'clilm i'llellii'h:nl i._ ._lililli ii,_
Ihi. ri._li,i'linii iili+l Irlin,,nii_-il_n c,_.lli¢'il'nl_ |lip ti lln i'lil.'llllil'.

I'#C lllilill ' iI,il%'t,, 'rhi, ilill,llr.'il i,.llllrl,,,_itlli,, i.iill llli, iillllr,_liiil..ill,I )

i'%'llhlilli'll h). illillliliilllillll_ Ihc iiii +._r,lli,,li i.llll
AI,I'IPIqnlx I1"PI AINt-il'All'1%1,1+1I'lll_i All%ll) II)I,IY {' lii Ihe c_,illph'x # Id,'mt', 'l'h_' :llq_r+_;_,h i_ I,_

_+ Ft',llll'+41111lPl lit IN I'IEI,IIAI *, rt.lllllll. Ihl. Iliinkt'l |lltlllliill 11%. il,_ ;l_Xll_llhHic *

' " Tht' llh_._+il',ll lllt';llllll 7 ill Ihl' ilill'ltrill t.xlil'l'_+ i'xll+ln_lliii , whiih i,, valid lihl'll Ih¢' llriltinll'lll i+

_]_lll_ ll_r lhr v,irlllli._ Ih+rl/ vi'i'ltlr ._nhllilin_ [._ ciln+_i<!t'r-+ihl)• l_ti'lill'T Ihilll unil).
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O/,?if;L\./tT- _,_,g,-,_, ,
! ' ,h'':V.LWiL17"t_

",

: Table A-2(h).Cilelliclents,t,(._).l,,(,%),lirii|c,(,_,)f,_rht,ritiirilrlildiI,,,li:'*,,.rtL',,.

I",',,,hi._i'r J,'arth t I,,ll .i,.t,v

Ym + X,M _,,,,
! #'" I - ll'_.._t,M

I "l #I,_+oI

6_ I- \',o-Y,:fl ''"'_'"

"l .I _"il N I l_j II

J': I VlU IL"I:/t

llllll Ih I -Xj,,V,_t

I I'_., +l}7".lit t A',.,I#L_.,,,'II Yli/'l)- ($ii-'lhl.t/'.,l',ll',,p,,..%_;,'_,'+t I

'" ii,+, _l- A',_A',:+¢I)(I ..li',,,_.',;#_ 21,,,_+,,, I_/,.,"+,,,

1 t'l,,, thh,,#',,,.%',,,(1'f %',..ill)-t')i_" I)R_,,7',+_+h,_.%,;,+.",,.Wt t
I , t ,,, | I_l.l'} ,*l

i 21'. _I /,',,,#i,..#l(I - .%".,.V ,..,JJ _I',, '

i I I}lli | )1"i if"ll _' I 'Pl*%'"lI I t" "1li_l) -- (7 _I -- | ) #'i llll _i) ui't_ill ) I "t_ i "/_ II

, I_+ 21+lll II - A'i,i#i'lii'J)lI + .li'lill'llill)

I *;.i "lhl.il'.i'h.'#'i.'.Y,*lil ! li'*:fl'' i+i'li +l)lhi7'iill'bA'io/C_-'P_)m'.'","*'++',ii"+i+ I
I"$ ) i.1. _I l',,,/¢,,+'Jitl+ li'i++.Ifilili) 2/'. ('''i l)'t"'/"+i

A',,, I A'_ A',,,
b. ! A',,,A',_¢I

'i Ill t'l*l I ill '_'111
6, I- A',,,A',:pI

i bl ),li I'lil_'l'l.q'l II

t I i_,,,i_,.,_+

Ill.:ll ' b_ l A',,,M,:,i

,' i'll }#'i] I| " _%'llllJ_i'l_I II II lil_lll+'tl i_li#l'i*,i |).%.ll_'l

! l+'+,i+ ll_lll,_lli7"llll t lll_ig '_i I_1-'I " i),ll'l-'.li'illlitiu'l'*'/"ii"*i:ri.'l t l
I ll..,.",.,

i Ii 2li ' II --l',,,l',:,t)(I ll,..%',.,_i ,!1'. I_''''

| t'_ii--li{,tl.%'li.ll'l.'ti'til='t ' k',wt)l'.* i'l., - li.'_,...#,,,'l,,7',,,+,.l',.i't II i
' II l)lli, I| #lt_lii#llll ,+'l I|- +%',,l,%'l.'_tl t

t

} | | "l (,i - | )[lll,_l'_ti[ liiWl'l 1?'l_l I I 4 All t_l I I ",11 -- | )[ii.%i:f I i i ,lil'illlh, t ; ,i 7'1 ,'_ ,',#I it |
I I ' i,+ II %'II

l llP' II- A',.A',:,i)(I -.\'.,.%', +I 2/'.

', +
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Table A-._.Parametersused and
Fresnel¢oeff,¢ientn.

Ii_ , ', I_h J

| D;Lr;I lilt' | t.r_

h'_ A,

;" - k "_ _'" A,
J

pj v_ j'qi'_ p

ul, _ i_ ++ p _.l'i,L

P_

tl, /._ .. A._I :2_Pl_
n'_ II,

\/ II l,'rv._.L,I('_N.'H,Ci_'Ut-

A.I', - A,I',
Ret11.cli,m ++, _"

K,I'. 4 k,l',
l'1,, II-I IIl'l-t_,lt..I ,d" I.Iv_r:lli.u ++.lllai,h'. I_r,t1_.

+H_,I', .'ml # au'l _m'll'" la_
'|'1";I llw, ll_ i.-._.h +tI ._"

K,I', + K,I',

RL.littioll._ _,, = - _',, _ ,, *-' _',, - I

......(:)-, II,,(I_ - +'
Y., = I .S',, ;% - "" ._'. 1

". (I| I}

(' }I'1'. I"rv,_lu,l ('+_.,ll,¢ielll++ ' 1 _'" "b • • ' ,+,_1
I1,1',- II.l'J

Rcllt'Ctl,.I A',, ",' II,I', + .11,1'+ _llld

..II.,I, ,(+ ._a., ;j+ 2 II_/'u 781

II,I', 4-.II,I', I11(0 = e ++I
Rel,.tio..: A',, = -/¢, /¢,, - i',, - I (It 3}

( "' /A',,,-I- r,, I',,-_" 1,, • I - _ ....

l 'l 1I" +

+

........ : ...... II

+ I' i

I Ilk II ] (',,ml,lvx ++Id,tuc -h,,_+inl_ Oillh*UP('. ,,_d,Rt' ,_., nt c,mt,,lll +',I' -".d I", aud lh¢' l._,,ili*,ll_+.I thl.' br,uu h j.,lllt
0" mud hl'_llltl +,"+t (ch,itu th|l')
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_ub-tituti,m into the integral., such a_ thai in ik _ f

c(lu_ll"t' t;_-2), rcsu]l_ h_ ;tn CXl)r,'_,ion .f the /. -: J. _i,l'tl.f{t))Jll ( I+ l,s)
I'_+rm

t

"., ,_/ .... " ll1( h'p ",._ l_),IIl
,_ +.,z+ .... " '+..... ' ( I+.c_) ':+

+ Th;' _,.ll.ll;,)tl, t,_ lh, .cc,,.41 ,,r,h'r at,+ L'++.',,l l,+.

+ in thv hHe_rand, which c;m I.. wr+ttvfl ;I.,_

t's(k' I Ii t '*l+ .... * "_, (It.7) Ii "+ II'R .l(c,) 2L'/¢

+ wh,.rr /_+ r#2+_:]l;+., and I_ and (v are ju._t 11., I{ | I)

I+,,+:,,,a,,,',,ir,.ct+,,no+t',c_.,,',,n,etrlc,)pti¢.,:,._ I I,,(,,+ + ,,,,,,, ,.,,t ,, I 'path. An mtc_ral v+ith L,xponential +)! the f.rm ' i '

(H+7) i_ ame.abh, t. the .,ad,tlr-point mrthod

intc_r-',lhm, _herL, #_. ;.+ the ,+addh' pl_inl. 1_._. ;l+.,l

d,'fi,rmin_t (" to tilt. O>lltl.)t.lrot mt+,;t rapid desrent ,"_ _" t
;tway from the ,,addle l.,int I' ..e ._,t:,i.. a. /,_ --ik_,i.,, J II,,_-
a.+xml)h+tic .+crivs ill the i).+,ramctcr +/.'k'l I fi,r the !1 A' t 2k/¢
htt+.'k'Ta+ I'!tt' leadhl,., tvrrn Ill tilt' ,+,'riv.. J., Ih, I{ I+'_)

.ll_¢_)mctri¢+,,plic..,_)luti(m t_ thP pr-bh,m. • .1"{+;! _ ';,-I ,, f'(0,_ J.It0,) ]_'l'hv ,.._,,!dh'-p+,.ll oH'It,,tit I' i-, ,h'f_nc, l tr.m Ill*'

:tr_lltll,.'tll ,,t" thc vxl.muwntz.zl ;_! ,._prc...+h,n tit T_.

_,t,+n_ tht, t'otlt,,ur I', +%_)lIHioll-,If{ I I) ,tml ,11 t;,l ,.c _.,tll,l ,i l,,I_:,. ;l+s
.l(t;! ,.., .I,,wl._ +,lrx,._ tutt_r.,!l ,,I # t.._r I1=,

_kRt*_ (_ -- 1 ' I ) _ " _ _' K -- I,'/_.¢", Ill _1 s;z*tdh' l+,,,.t,, 'tl'l'.:i_,.llllll+t+,,: ...... ;+,+l,r,,xt,h,+

x_.ht.rt ' .ltt/) li,;l'x 11,,| If,l+, + .t _tll;'l?[.t+ l,,,*ul :=, .tl ,_ I, I,,,
• lprt's,_i,,tl., h+r lh,. _,,II'*HI_ |_tt' .tl,t,,,+t:l=V+ III lh,

s" - ',In it)' ,,) ',+lilt tY', (1{ *11 hxl, hr,_mh I,.m+_ ,,n,I I,,,h... ,,I ;++/_ ,,r, ,++ th,
tlll|t'+-I llllp++rt,lllll' III |_I+ .i,;ltll,_l+ II, hr,tlltlt

,ul+l p-in+'. *)t I(#) .tr_ '+h," +ro+_.=l ir,_h ,,I th,

# - 0' _- W'. ( 11 lID l.,ut.l,tr.',., It+ lb," l,r,,l*h It+ I +,,' , r+*. ,,I ,,.uh +.

vnt,,r 411lhc I(#_ thr.|ll,'t_ lh,,l,,l,M_,..
'I'11,'t++Hth+tlrI" t.. Ill* n _t+,l'tl l=x lh*' ,',Itl;lti+,li

_+'_+_, + Il "_,,'"' 'I' ' (1_ 1_,)
_*,.(d - ,,) _in:,e" 1 _11 11)

Ill .Ill lh+' l'r, ..t. i , ,.'tJlc1,'lll..Ill,-+, rqH, ,I +1

and z, ;It0+-Iral,.d i. l"u.turv ILd. 'I'll++r;.li,':d -l,lit., thv r,,,nl=h _ l/l,l,.n, h,l- I,_,,
+'ln rxc+:lh..l t'V_ll.l,tli,q+ ,)!tht' Imrti+ul-',r Ill.'.. _IVlII411n ..h*','t. milh hr,=,, h _14,;III- ,st

O[ hlt_'_r;+l'+ +ha! .qq.'ar in tht' it'll i._ _+V,'h l_x"
• J+,

Ilrrkhov.kikh (Pihll), :rod the realh'r :. rrl'crrc, l .,ill #,, + Ill l;'J
to tiff.,+rt'+l'l't*n¢t, t,+r iAt)rp detailed d;+u+_.,i,m. In k,'
tht. rest+.I"tl." ,li,,cu,+._i_,: ,,-;uth,n_ t- thv integral+
valid Io the .,'cond .rth'r in /,'g t are u.,,.+l. 'l'hi+ F-r ' , Iv+,, l-,.vcr carth l).rc .zr_ l;+. Jm,utt,laric,..

involvv,+ t+.in_ the ,.+'c-n,l--rdrr trrm. i. thr wid, +_'rtm,+,ritit,ll;lltl,{l+.,t_llr+.lll! H1,tl+,tlt

lla, nkrl-iun¢li+m +xpan.,hm ;+ml the. takinR the +hvt'lt'+l #.l,l.u. • In II=,+h,fl_ ..l,.U'0. +;=rd= l=r,,hh m,

] '-.=,Yml=tOti¢ ,,_,Iullon to the inh.grmlm t,t the .,+'coral the c-mlfl*'x #-lJa,. ' i.. Ira+, .,hr,.h.,l Thv r,m+,+..
.rder. The int*'llrll,+ in tit+. tell h.',vr 1+_+)f.wm." thin l.lh,mv+l thr,_ugh.ut i., that ,,t laki._ the

+_ l)-'.itiv+ • ,_luarv r,.,l. 'l'hv .,url;l**t. *It htu',l ill lhi.,

I_" f lll_lltllt'r i. rcfi.m,d t. a. lilt" UPlm.r K++'_I_.I_. ,,fir
r It = 211'J, Sill 81.1(_) (11 I. )) h|t", °. l"-r .no h+ cs,.+d..Itv lhv ll+Ic_t.t?., Ill, l,r,+,, h

('tlt., ir.t. the tw;lltvh imdltl.+ lilh'.! Ira'+11It,t,',l rl'I1+'

. I
"¢+_1 .... //.(_'JP ";Ill _)+/_). t,,r_'¢+'Illtolt tl.,+v+I h,*r, i. |Ill,, .,.tltl,, .t., IIl.i! +,,I lilt

,tll,I Itrckh,,v.Ltkh, mh. d,.ht.. It.. hral_+b hu*.. a.

,ind IIl+l++_' t+Hl|i,tlr+ ,th_ll_ W,hl<+h II. Illl.l_.'IIt.lrx p.trl ,fl
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578 Annan

_q_:.ttI4_'l 'I_-lh, 1- ,,I,_. 'l'h, I.rxl:,h hm. _ t!lq. _/.i,,,i
('h:_,T_ht_,_ IL.:ur,' I: ' In - |-in' " l),.l(f/,_

i'h, _,r.tT1,'hl,,,,nl. ,n_: t 1_, I ,I._ I, ,._t_, ,_4L,,uIl' .)II ,I/, I I{ jl!_
h,r -.L ,fl, ' I in! ._I:,.t.I,- :_i .qt_r ti_ _ii ,_ \. iI tl.

_',llt_l.r (' LII_,_ 1'. '$I,' l,r_T_h I.,;l_i _:' n.u-t hi'
,r. ..... '. _ 'r.,,',:_ ,[ l,II :..: It,']) L* :_,.,U_ l,. t.U.' ;:i_q'r_ lh_' l'llllh_ilr I'_ lllll- ll,,ll! I /:- Ill #' "I_ lh,'

,_ .:_i! ' .r.' ',\ il -, l,,,l._t, ,_.. L!,,' -_,!,lh" l,,,i,lt .u_,l ._],_I_ the' rlThl ,_I IIH, l_r.ln}_l_ L:ht l",,r ._l,l,r,,_,

hr',t_h l,,,i_l (,,ll|llllllt:,,ll ,-.ill I,. ,,l,l,1111_',l I.i_111_ • )

II_ II_ ' l'."l', 'li,lr _ _ , _I t_,, l.'rl, cl ,li, h'_'td¢

111,ll_'rt;Ll-, : ,l_ ,] t, t,,rmhi,, th{. l)_i'.l_hI,Ir._, "I ,.,I: ,,,. (,, _, I_,.

,, -;n _ j. /.', • l,'_. _II I,_) -ulwr.',_.'ripl,, -_ :u_,l - ,,,i f_l),) ,l_'_.,t,' llw ,,i_:, ,,j/_
the. r_,li_'al i,_ _,lu._li,m l ll-lr_) t,L_'In in .l{#,i, a,,,,,l

.ill,l tht" l'iHll¢,ur ]_' ril .,, ll.oil|l ll'_ ?i_ l_'.. Th, {_ "l_.,)llr

,I,, - .",ill , _'; _, /.',. (If |i)) ;I'_X.L) Ir+.,l'l 'l'h_' l),+th ,,I .h'_l_,'_,t ,h'.,rrld
\ ]/,', P, dt'lh_r,l l,y

11111k,l_l'i_(_,-- i_) = il_ll",l:Illl (II 22)
'l'hr .l_p_.l ,h'-_ . , _.lhl.ili,_l| _I lhl. l)r.tllill-

l-,inl _,_u,lr_huli,,n I...u.._:,_i.,,',l ._- l,,ll,,v..: "I he :_.ml i.,,dhl.,tr.lt*',l hy t!1_' ,l,,lh ,I li_i_,m l",::_Ir,. II ,I.

l,r._'h _'_I il_t.._r,d h.t. lh,, i',,r111 _)II lh,. a .urnl_ti,_s,1 lh:ll /.',A'.;_I, ,_,) ih,lt ,,l_l.V ]

..... k

%
\

\

',

./' ,]....._.__,_,__i_.I, _ i,,.,

l_r.|ll¢'}1 I.,111l I'II_II_IIIU[IIIII, -'Irll I ll_.ill_ I ! _I l",i _ill II*'MI'I'I_ | l'h'tt*'_l _llll')
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Radio Interferometry: Part I ,579

a n_h',. ,, t.r._ t Io..c to _j c,mt rd_u tv ..i_nda .in t I._.t,_ /' t''the' in,c_r,d.0, can tw .vt equal t./_u in all v,q,r_., V'n _' .."a x .x:. ,', ,/_

,,ram. in lh,: inh'_r,uld t'xcc!,t for tlw tad.,tl, lu

.'I+(0,_ -- A'(O,) = /"(p,) i'oSe,, Ill 23) ' | "'

and the {ntc_ra] ]:s a|_]lroxhlmh'ly Rt':zrranXIn_4 _,1u I I.m_ ,1_ _I I .l_l,_ , I; 'hI ,.It,
firmlh oldaln

: j,lq '.'11. = t ,.:,,.,.,,4 d,' c /'_" I
211 /, :-

2IIp': ti,'i /'_I

,,:.. ,,,,,,:• - .qn 0,,1"(0.) tH-24) tl - c-; .' t,m 0,1

.(,111_ BI,I p? I,, ,,,_ _', /

• fro., ON '*'lt ,.,,. _ .... dot. which mu.t Iw ,tdd,.,l t- v, lu,lll,,l_, r I_ [ l _ I__1tl
J,

The a-,,Uml_ti,m in Ihv-,.l.lh I.,,mt .ira1 qvv I,
i:or Io_ I-,,_, mr'din, _ v, chl.,,t' to tht' rc:fl axi,, for c,,t-dc,,tcnt h'chniqut., tl...t ' A' I i- r_:l ,,mabh
/,'_<[k', or chv.t' to llu" 11"J linc for /,',</,'j m the v,tlid _,sht,n N in t,'rcah.r Ih,lll I',,,- ',_4_,!tll_lh..,

c,,mPh'x t9, Idam ,. "l'ht' mt'lhod t,l ",-lulitm till flu' ...incc /,'_' ]'/r aild /,'A':.. ll) _,_h+'l, h' .)
mtc_r:ll m vitll;t|ittli til Jt) I- .li_i,ll._ +dift'crcllt i,i 'l'ht. p,,k',, ol the iilti,l:r,tll,!_ ,,r,' ,ll,, ,,1 Hu

lilt' l_.',ll '.lltl;t|iOi}_., Ill tiw rt'-uh., art' idt illit;t] l.,rl,mcl' in tht' .a_llllloll.. I)l.t i .i,,n _,i tilt ti i,,h

Ih'rg |ht'0'_ / Wl!l IW ;l.,'qllllt ttt l,,.,' t_' ttu' rc,d a_,i.,, m lilt ,.,,bl|itHl., I._ Ri%l'l_ Ill lh,' I, _,1

'['hc :q_prt,xim,d_, .oluti,m i_ _.did lt_r _._ iic;ir tbt.

._[oribl ttw _ht pt,.l ,h...cvnl I'tHfli:dr ilt,ilr /'_Ul Tht author in _r.ltl I_zl I,, ih,' '_.[Iti,li.ll I_t'-,t'.llt h

('ounci] ul ('.in;ul.I I._r .I I. II,_.hq_ _h.h .ul_
O, _ _l_ + il_, (l{ 25) Imrh'd thi', _,,rk

Thi. _t,rk i,_flu' m .4 I_al. r m ,, ..__.,.. i.t,x idm_,.

wllcrc It i. much h'.,, than unity. Then, lilt' It;It'kl.,r-lllld ft." lilt' SuI I,u ,' f I, ,'ll it ,11I°lI,ll_ l
tit", I".xlwrmwili pl,umvd h,i l',. \1.,11- 17 hm.u

(,:-,:). ,,,,..,,,,,cos0, "- ,.... l_'2u , (]l-2t))
/"_ .F,._.._,_,,,

and llrt'kh,,v.k&h, I. M , IO(_), _.,_., m I,l_r,_.ct m*,ha
N,'w V_rk, ,-%cadcmi¢ lin..,,

Iluddrn. K G. 1')01, Thc wave tmi, h' tlliHIt' lht',._ .f
" wavc Im_l,a_;ltion l':t_t',h,wot.I I'htT.. I'lcm:cr 11a11.

ik,R costO,- {_]"--ik,R cos tO,,-a) Inc

-k)Rsin (a-Ou)u. (B-27) ('Irm,_ow,I' (',, 1060, The ld,m,' _.l_,' ,.:,ectrum "1'rcst'lli:ilii)n Of @It'Cil"'lillli_llt'ilt' hcld_ \t"a Y,,rk,
I'_t'rK;I moll I'rt'_._.

El-said, .%1A t1., I0.%I (h:otdu..it.d I,r_lN_.¢lmll _ll
The integral in equ_tiun (B-24) becomes tmdcr:round v.rter ih thr dcst,ll by mrans ol _let I,',,

ma_.,).'llc interfrlencr frin_.c. Ih',,t I k I';, _ .11.
_,?I 3(land_}4(i

kit ,lnlliltIi'PTl)sihi('kncs,,. 'l'ht. l',,tilv I_t,t,,I,l, _ I 1,l' IlK) .llll

( II 21"1) k:ti.tillt', T I . :iil,I I',dlvil. I, _ , lU;'l, t It', till.if I''1'

fll • 1,i'f i ll'' ill _tl,,,Ih, I I ,lll,I I. t Illil.ii , .lllilih _ ttl I'l,li_ ,I

• %/l# 1" lilt ll,,l (,. Pll 'l.dll. lill'- _ll" lilt' t_lililld I,Iltl;ll ki II Illl ( llllil'lt'lltl , II,UI_.

• i, llhl ll',' '',,I l,% ._ % ll_lll,illl I';tltl}'ll,l+'l,
%1,i, I ,I ;I Illllili_,l_)

I%ll•ll'ili, i, ,_l , ,'1t;, I liv llllllql!',ill_lii ,ll ' rlll_ ',I IV(

NIIW_ lhc lillt'_rill _v,,tl t,,_ q,l;ill' .I Iht viiilh lllid lil ihl Ii ,i,t'l ,ilila_

i+I'" _i_
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sr_ht're. Part I I'r(x" I R I',., v. 24, I_ 13¢)7 1/,_,, m dvr I)rahth_,en h k'__'ru,h;_'A.m I'h_-d,, ,, "._ ,.
l';Lr_ 11 I'r,,c. I R I': .'..2,_.p 120_ t2],,. _')._ 737.

(.)it, H. UPI'.. Rt.tk',,hm ulld l(-t'¢hu,_ ,..m Ku_tI U_40, |'4rllal ,i_lT(.._ml.d t',tu.L_t,*._,m l.h,,_L,,,
,..,cIleu, } _],,.kb,I,) Ordxmn£ AUT_ I'h',.,,ik, ".' 41, i). "_e_._. '_',_rk.._Cack'tnll¢' J'rt'*.,',
443 4_'d_ ._tran_a._ i) %%, Iq_t_, M,.,. I'.ltt'l,t,:d i_.l,_,Tti,-,,t

1043. [)it" Sattt, lpunkt.mwthode in (Jr'f" [ tt_t tht' u'q,e_m_.'.t ]a_,.'r., .',t'l_.twt, v 1 _,_._ q)l. ) IO1
hurt: rtn,t'.; I'ol. mr. :_ItWCn(}tlft_t'lt _lUf (_tt' _ c?]t'not_tlk Val'_der %_.aerdcn. 1', i.. I')_l, (hi thv m,.th.d ,.l -..t,',.t_,'
_l,_,tAku'.tw' Aim l'h_._ik _ 43.1,. 3o3 po_t. ,s,l_l,t ._en I_t,_, B2,1, _,_ 4 _

Ro.,.._iter,J. R , I.a'l',)r_tca, (; A. ,,Mm;tmA P. ";,tra_- _, ;tit, J R , lO._1, "I'm. ,,,.q.::wl. dm,_},..v_ th(. h,,_
wa',. _) V_', and Simmot_._,(;.. tOT';, Radi,, inhr _'.mt,dl,. qr,_.tiltt,I .,_Lrth (':tI_ J I ]t'._ . _.' '_ I'
feronwtry .k'|,th ._un,lin_. part It exlwrin:c_:al 577 5(J2
rcstlit- (;t.ollhy,,,ics, this issue, _att, I I,_. IU70, I..I.,,clr(_,t.t_tl...ti("_.,_.,,,.._,ill ,t_:tlq0_l

SMnI _,mm_t, M, and .'¢,tran_v,'a...,Davhl _V, I_)70. me,h,_, 2ttcl _'d_tion' %t..., %,_tk, Th, M,t_ m-l,m {.
filch<trio prop(.rtie.,, of dr: , gt'ologt¢ _)later]al._ Ward, S. Ii , and I)t'x, s., I')71, [.ulnar surl w, , l,_ try, _
(;eophv...i¢*, v. 33. p, 624 {_45 ir_agl)t.tic ,..,_un(tin_ '_ the._rt,ti,.'al .rrml'__l .. I I"l I

Sonmlerfe_d,A.lqOO. l.'berdieAusl_rt.itun_(lerWt*llt.tx 'l'r:tv_,t;|':_).v._ 1, I 03 71

t

1975008236-402



!

I

C,-:3

GF.(IPHY%I(",,V(H. ;I_,\'I+_+_ (JU\'I l+Hl),P RSI _+_},17 l?ll;_

RADIO INTERFEROMETRY DEPTH SOUNDING:
PART II--EXPERIMENTAL RESULTS_

.IAMI.:_ R I+,OS,'-;I'I'I:R', (; E I+,.\ I, I) .\. I,,xT+il,tI_A(',\+ +. '_. I'I, I Ell iNN t \* +
I) AVII) _.%, ,_'I'I<AN(;XX.XV'§, x,_D (;I.;NE _[.MM()N'.;I

In +,uch highly rt,.si.,,livc gt.olllgic l.nvironnli.nl,, MOIil 'l _tlIll [r()111 _l.lt] [t.,,t,, OD lX%O _lacit.r_ ar_'
;.t', if+.' ",ht'i't% >,ill lay t.r,% ttil(i 111c lllOOil'S s0rt.art', inlcrllrt.tt.(l (>ll ihc h't,,i._ -I flit. thi'c(rvlii al r_,,,uil,,

ri,dh, xl:tvc, licnctratt, with tilth' attvnu:tlhln. (it P++irtl II the upllcr l:ivcr i+ thick, {lit' li+i{{t.rwl
'rhc fit.hi ,trot+gill, abilut a tran._mitting ;.tlll¢'nll_ in vt.r.x qnlllh. ,(nd tht. dk'h.clric cGin,_t;inl ((t.lht.
placed Oil the _tlrl+_tct. of such +ti_t.llVirOlllllt.ll[ CX- I+LXCPCltll hi' t'a_ily lh,tcrnlhwd. An UlqWr hmuid
hibit inter(t.rt'llct, l'a'ixhlla and niinhli+t which arc till thc hi+_-tan_4ent e,ln hc t.,,thlliltcd+ l".w {hill

hldicativt, of ,lit' in-+hu clt'etri¢:tl prollcrtir+,, and layer,, tilt" dt.li{h can Ill. ih.lt.rnlhw, lil + tilt' l.(_._
the prrst.llCt, tit sull+tlrl.+tet• la.xcrhlg, t_t,1_t.llt i+_h,.,._tilan al)<lut IIl(i, :illd a erudt, i,,,li+

l']xpcrhllt.nlal result, from an anah(g +,,cah' mate ill. ,,c+ittcrin_. can Ill' ni:tcir.

INTROI)UCTION Tht.orc{Ical h:lckjzr(_Ulld1o lht. mclh..l and a
"]'hcittlt'nll;ltiOllofeh'ctrom'.ignt'lic+w',tve,,lir(lli. _t.nt.r',d iiltrilililt'[i()n ill {hi', _t.rlt.,_id' ll,illt.r,, i_ :+

agatinlz thruugh tt.rri._trhtl r(ick_ i_ cxtrcmt.ly lirc,,t.ntt,d in l'arl I by .%nn.ui (I'H,I, II. 557). Ill

high dtlr hi lilt, nl(li,,ttlrt. Ciillti'lll, it+',it rc,,tllt, I",M l)rrl);trall(.n t._irhltt, rlirrlalh.n (d+ hln:tr data.
lilt'tllt)iI.,, ill lilt' raditi-l'retltlt.l+ey r;lllgt, h.ivv ii,ll havt. lt'slt.(l tht' mt.th<_d 1+.Ih m lilt. i.tilorah,
found gt'nt'rill tl,,t, in Cxl)hlrhiR tht. t'.Irlh. A l't.w with all;iI-_ ,,£11+iflllli<It.I,,tl'_illlZ+xavt.h'nlzih,, hl the
himhly re.,,istivt, geologic t.tlyirtinnlt.lll% such it-_ ct.ilthllt.tt.r r;tn_i, atlll ill lilt' firm i_tl RIat'ii'r_, il'+ini'.

ice ,,,llect,_(l']van% 1903, ll)(l,_, ll)¢i7; Jiracck, I%7) xva.vt.li.nt4t h-, id_,ilt tht. +aim' ils x+ill Ill.u_t.d ,in lht. i
+rod dry +alt layer_ (Untcrbcrger ctal, I()7(): lllOon, l'ht.,,t, ri',,uh,, itrt. lirt._t.nh.d hi.ft,, ._
l[olseret al,11)72),arc ._tll'licicntly(fryt<lllc

tran+imrent to r:tdio wavc._. The tlppt.rl+ll(ist lay- INTI_RFEKOME'rlIY'I'EI,I|NIQIil +'

t.rs o[ the moon are aI,+ovt.r)• resistive (_lr;tng- Radio frt.qut.ncy inlt.rft,rOltl(,lrv (RFI) i_ d_'
xxay, l%l); Saint-Antai_t .',vld Stranlzway, I'HO), scribed .qml+lYa_ full.ws: 's lrall,,lnillt.r avida,_+,,o
and typical attrlltiation di._tanccs _or ,_kindcptll-) ciatt.d lln!.t.nlla till lht. dh.lectric +ilrlat'c Izt'nt.r:th" }
for Itlti_tr lllalcr+:l+l arc ,_h¢)x+,ll i11 J'igurc I. R F wavc_ which arc rvct.ivcd _l.lld anlldifit.d al

111tilt.so tn+ttrr{al% EM wave+ prollagate with s<,me distancc. St.vt'rttl waves tea,oh the rt.ccivt'r
little attt'nu_,tion and _rt. u_t'ful, in theory, for - e.g.. A, B, and (' shown in Figure 2. Bt.causc
depth .,,ounding. Tilt" Stlrfa.cc Eh'ctric+d Propcr- the various wart..,,traw'l different di,+tanct,._and,
tie,+Expcrin;('nt, whici; wa., dt.vt'l,prd for Apolh+ or at diffcrent w.locitie,,, they intcrft,rc with each
17_tl.,,t..__tlCh ;.t rot.\hod it+ t11t.a,_tlrt'lht+' elcctrical other. Thc interfcrence pattern can hi. gcl+eratcd
l)ro|)crtie,_of tilt' moon and to +_t.archf,_r layerim&, in ont. of lWo dif[ert'llt way_. Either frt'qut'ncy or
']'ht" nlt.lhod is based on the hltt.rfercnce pattern distance can be varit'd, ll_ddin_ the otht.r c(m,,tant.
gt,lwratcdbetweenvariotl,,,radio wavt.,_. Frequcnch'sof.+(It)khz to50 Mhz and lli,stanccs +

l_rcm,nt_,(lal the.4Olh Annual hllcrlmthmal SEt; Meeting, Ntwt,nll_Pr_. I()711. N_'xs(h'h,ai_,_.IJmi,,_.tntt,Manu
, , re'rip\rt.crivcd I)) the Edit,r Aped6. 1tl72+revi+,,ctlma_m,,triptrt'ct++vt.dNovt.llll_cr2_, |+17,-)

_'_ * ['it+vt'r+,il) . (sf Toronto, *['or.nto 181, ()l'l+,q.dt(, ('+lltlt([+,t,

Mas,,_tchu_,{tsIn,+titutco( 'l'cch,.l.R._, ('amhrldgc, Ma_mtchumt'{ts{}21,4<).

§ l'rcmntl) on leave Io NASA Manned S1mcecraftl,'t.lllt.r,l|uu_hln. 'l'cxas 77058.

+elIt_73Sm:icty +)fI'_,+phlrati_m(h'.phymici'+ts.AIIrightsre,4Ptve+1.

Sll
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582 Rossiter et al

t l I 1 /o-2
q

FREQUENCY (H l)

l"Ii;I.,_ttt,ntl,t,li_mdi.,,t:mcl'in lunar _urfac*'mah.'ri_lI.Weavl, r (196S} tht'wmal_,mi_,,_,,,2,Tvh.r (llPfiX)

hi,,l;,licradar',.A Chlln_ _,tnl (I'971_ i_,ll',m,mml,lc I-_(_()2,._t4',L. Kat_uhc aml (',,Ik,*l(lqTl) l,,_',l'i,l'.,u.:,h'

ll_Ofj$,_.l_a,-,thr:In,l( q_11*'t!(IC,_71)llm,_,mlml)h.'IIXIF,I:6,(;,,hl¢.,val (1971) l'ml',_,vllrillllScll'll_.l|il'_,'IIll'Ire

,lUl'll('yrall_,,'I. },rU'.,,'Iillthe ,'_tlt[:ll.'l"l':k'ctricall'r,q.'rtil"_l,Nb_,rim_,nt,m .'%l.llhl17i',mark_',l'.",I IL'

ellIt l'l'wml't_'l',,Ill;tfv_ kllt)nll'h,r,,art'l.'har'tl'-lllkl.,lll;tVl,itlug,.,.,l;lll_¢,nlI(,_;.,lh;in ;ll.)tllIf,l, ,,r

h.ri,,tic,lh,_'_,vvr,ili,_n_)lIr._ihh.m,l_l_,l.fihl:z lh_':tml)lilud_'.flh_'_avv.,lhalIr;l_'Hi.Ill,.

_" lllll,'(l,_l_t't'l_-l'rt'qtl_'llC.V_IIIIVIIIILIlh:ll_iV{'.',inh'r- nlcdiul'nwillI)_'ll._h,w t,,inh,rl_r,._¢,II_ilh the.

llrutaBl¢, r_,,,,ull._wvr _ur irequ_'ncy halld ill'ill- direct wave -i.e.,lh_, nl¢,ditlnll_r_hud mu,,l h,,

lur¢,.,l;lhu..,_¢' rl',4riclI_Ur,_,B,'_',_Illthe varialion Irlln,,l)arc_,tat lh,:fr¢,qu_,ncyu,,ed.N,,t,.ml,lhl.r_,

,_1di._l;u_ce oF .i I'_'w fixt,,I trequt.nci,.._, mLl'.,t I'.Xl.'.t _t c¢,ntra,.;t ill ¢,h,ctrir'd ,,r m;tKm'tic

# "l'w. crit_'ri;_, m_.l.,.thornet f.r tht, RI'I mt,thl.I t,_ p-.i.'rli_,_, hU.w thl, ..tlrlar¢' ill -r,l,.r I- rl'lh'ct

t.tTcctiw'ly (Ivt_'ct and ,h,terminc dl,pth ,F a ,_uh- _'nc_y.

.urt';l(.'¢,l)lltltllJarv,l"ir,.t,the" ,lieh,ctricm¢',lium _r_,'r;tl_ave,_ :tr¢'_¢,ncrate,l _hich ar(' ira-
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Radio Interferomefly: Part II 583

_R (_ VACU_

Xmmer A

B i

/_//I//1117// /I /H/1/1///I//
REFLECTOR

I.'ll;.2. 'rht.I_._ici.t _.rh,.,n_Hr.vc,mC¢.ld. "l'h("interf_re.t_of the ,lin_:lw_tvL._A :m(II!
a,d Ih*.rellcclcdWUVL'._(" i.qme_L_ur¢.dat the reo=iver.

i._rhml m'z_rlhv _urc,'. Tht'ir w-mrlrJc ruhttJm_ .f w;w¢.(' i. tht'Ul)l..,r mt_lium.1'. haw" lhv _m,"
;try ilhi.,tratL'd ill Figure ._.'l'w,, .,.Id.'rical witvt'.b h(_'i,co.t;tl I)ha._ vt'locit)', wavv II i:rcq_;_m_.._
._ ;trill (', Ir;tvt'l dir_.t'll.vI.,twL.q.. Ih_' tru.._miH,.r ,I._.w_tr, I al it. a._lt, _ a._._how. i,_ Vi/.,_m,.t.
aml I!.. rt'('¢,ivvr, W;wt. (' Ir;wvl.. i. Iht' uppt.r 'rhi._ ;inch. i.; lh¢.-',.gh. o_ I()lul inl_.r.;ll r_,l|_'(*ti,).
iIIt'dium t.'_ir .r Y;lt'tltlnl), ;Ittd w;t'<u ,_, ill Ih_" I_,'lwt'Ull lht' Iw_ lm',lia hmfili.r I.._.J._m.h_l_i._l,%
_';irlh. 5i.¢t, Ihv._"w;wv._hp.w,dilT_.n,.! v_.h_'ilh.._, dt'lhwd h.v

Ihv)' will i.h.rh'r_" wilh ,,_ch ,dl.,r. Thi_ i.h,r /e.
I'vrt'.ct' _i..'¢'._a m_.;L_urt"_d"Ih_, (lit'h'clric c_)n...|;tlll _in _J ;= A[/ ' (|)
o1"ihv Iow_.rm_'dium,_i.et" tl.. _rualt,r IIH. (lil- Y e,
l't'rt'no.'in lilt' v_'h¢ilit_ of th,'s_'Iw. w-'w_'.%Ih_'
greater _ill I_' the i.tt.rh.n.m'_. I'rt.qut,nc.v, wh_'r_,the,rritic;d a.gh,/J i,_lht, ;I.gh' l..lw_.t.ll Iht.

'rht. I|a.k, h,.._d, or htt_.r_l w_tvt. It ;rod tht, m.g;ttiv(, :-.'zxi._;zn(!tht, dirt,cli.n of Im_lml_thm

_)lz,.ric_l wn',_ ._.giw, the' tru_z._mittinga.tt...;z o1'w_w_,II, ;tml ,a ;rod e_.n, the, dit,k,drk co.-
a highl)' dirt'_tio.;d r_(li_tio, p.tl_.rn Tht. lalt.ral _t_tttls.1' tht' upper _mdIowt,r mt,(li., rt,'_l..c'tiw.I)"
w.w..,_,ti.fit_ the, h.undarv c_.lditi-.._ iml._,._',l (;_._sumi._..nmal_.t'tir mt,,li.). TI.. _tmplitudt_
I)). w_vc (" ;at tht, i.terf;tct., .,.i.('_"Iht. h.ri_.,ml_l .f :%_.ld II _rc.largt'..,Ii. tlw (lir_.¢li,mpl. 'l hi._h,a-
i)ll_ .vt,l,_cit)"of II i. tile t,_rth i_tht..,_amt.;t_tirol tuft" i,_h.I)_)rta.l hl R H ,Icl)th ,,¢_u.,li.l_._ince

t,.t'rg)' i._ I)reh'rt.,,tially Ir_ll,_mitt_',l ,h,w.war, I

Tht' ._ld_t'riralwaw A, trew.li.l_ i. Iht. I.wcr
Z \ m_lium, _1_ h_s a ¢.mldt,mt'ulur )' w_tvt, which

t _ _ mulcht._ tile Ixm.,lar) c'..,liti, m._.A. inh,ml,_,e.

I
I I_r_)u_w_tvt, l) i_ l)ru(hlct.,I _d the, ._.rf_tc,'; tht.q
I w_v_. I)r,_lXtgnt_'_r;ulinll._'(r-m II,i. ,_mrrt. wilh

Ih_, v,.h¢il,v o1'A, hut ,h._.av._t'Xl.m_'lHildl) with
' I_ s "P hcigh! ;tlx_'t' lh_'_ltr[uct,."l'l_i._wnvt, i,__il_.il'lcs.I
I % nt,m,Iht' I.,u.,h_ry, but il_ _,ff_'t'tdrtrt',._.._ _t_Iht.

-._._J_%% ,_ r_¢'eiv_.rnl,w_ away
from tl., e_ur[Iwl,,

I ' "%_y/" "IT ._ "_'rilic.I di._t_.c_"' r, i_ ,h'th.',l ._

r, --" 2d l;m #. (2)

Irm. ,;. W;W_'fm,I_.I l hv .ir .t|_.h,t.trlt"(;= I1)I..m¢l
_r_',_,i,_th, radhddir_i., fr,.. Iht.re.roe.Mt'dhlm I wh_'h' d i._Iht' ,hldh It) it Id.,.' h,,ri_...I.I r_,
I,q"air,_r_,__mmG,,,_.), .ml ._'_lim._I I i.,,. dk,|et'trir Ilvrltw, 'l'hrt,e IO'.t'ral h'Kiem_t,_.i_l: I1.' m._r li_'hl,
, . _ .I i_ it .q,_h_.ric.lwaveim,,,.mtli.e r_di_lly I.

m('iiumII;/_ i__tht.;_,twaveim_txt,...li.£,l.w.w,,r, ut wllt'h' lht" Ir,*n.mith,r.rt,_'t.lvt,r dJ_liml't, i._muchthe,-filial am_lc;(" I_ a _q_herk'.lwuw' Im,lml_tf._ lt'._ Iha. r, ; tilt' reeion ut.ur tl.. critiral ,li,_tmlce,
r_fll.ll)' in mt'dium!; _mdI)is _n inl_m_._mt_uqwnve wht.rv th,. bulk of the relic,creel em,r_y arrivc_;
Im_l..mfinl_radiallyin mediumI, hut .ttenualinKex
t_m_nti_tll)' _th hetlch_, _nd tile _ur.fiehl,well b¢),o.,! r_. In the ,le_r.flel¢!
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Radio Interferometry: Part II 5|S

'! *'*r--I

' '......± l.I "*""
Klylu'(Xt /'_/_ -- _ Quartzsanddlelectri¢_ _ _ _ L-"/I
_*-_-/ V_ ._'-." -._ -"T----- - " . _ "C/----A,--,,-
.... l/l/l///,// 1/11/,1/(,ft(_/I{/l(I '//11/(, t(_/1( I_/t/It/flll(li 1/J// ¢Vme

I"IL;.5. The :tnalog.'_l:(tlt"m,,k't. The Irl_,l,.millt'r _;l., cq)llll.).,.vd q)f.i kh sir.. ItlI.. r;tdlati._ :it Ill (ill,, iltl*_;t rt'c-
ta.g.lar wave_.hh.._ vt.rtlcal mag.ehc .4.! a.tt.llll,l wa.,,h)rmrd hy a dh at tile cml .f th=.t_;lveg.ldr. Tint. t t;m,,mit
Ivr c.tihl t.' rai,_'d .,i h_w¢.rrd.._ig.;tl,_wrre ,er,.iw.d h v ;¢,,mall di_.h. _bi.'h ¢,,llld Ilavcr.,_. I',lr al.m! :)(Itt;Iveh.01glh,,
at n.y ht.i_ht. The dirttTtric tl.,_.'tlwits .iwillz .*41lid.llld the rrt|vch_r _;I,* a Ill|! :lhlllllllqlll phtlv K,'_ciw',l ",i_l|;tt

; _lrr._th t'cr_tl._re_._'ivvrt._silhm _.;ls l_'(:.rdcd dirc('tl_ .. all ._ _' rv('.rder.

i 5..'t later versi.n of lilt' scale m.dt.I u.,,illg Ira.. N ;" Lr-_+ (: - h)_l_= r, (4)
: [,=rmt,r _)il ;u_ ;¢ liquid di,'h'ctril: has aim) pr, wrd

vt.r.v .,,ut't-v.,.,,l',l. Thr Ir;llP,.lilh'r .'ll.I rcc_.ivur and

wt,rc ._m:dl clcrlric ,lil.)lc., ,,i,t,rah'd :,1 (, (;hz, N' = I,_ F (- + h):J_-_=I,: + 4h'_lL (,_)
I and tht' ml.lvl wa_ ¢o.taim'd i, .I h|llk li0wd wilh

micr-w=w' :lIlac)rIling mah.rial. TI,. lallA_='ltli;tl rh.clric Ih'hl I.:_ is Iht.l=

The validity of our uxperimr,tal arrangrmc,I

w¢_ initially tc._led by comlmritl_ m(_lrl rt,stlll.. I';._ = - i_01u
with the.ruHcal predictio.._ f-r a vcrv simplr #r
r_. The transmitter and receivt'r _ert, I_lth

plated ,'It hciRht h ;llmve ,hi' ;llul,,hlllm tllalv = -- i¢la/ li_'.-
wilhout the .,_n(I. L

From I';trt I, the I';M radi_ti-, from a vertit';d

mslznelic dil.4e _t height h over a marm'lic=dl_ _. _"_0' ''_ 4_t / 1
u.iform hidf-sl.tce i._de._crilwd c.mph.h.lv by Ihu %/r'-' -_- 4h _t i_=_ -- _' r v ._. 4h v/
vertical mitglwtic Ih,rlz vech_r, give. I).v

( , )] ,',,=r,= + Xn= : > II, (3) V'r_+ 4h=
R R'

"l'hr.,

where,',i, ll,,'wa,'t.,lt,,l,l,t,r.R.,i, lh,.rrl,,.,,,i,,,, [',"_" / l, e ''''''t
. _, ¢_'llicit'nl III lilt' l,mmlarv iI -=lilt R in tilt, ,lirerl IQr, hi . I i -

Iraveh'd h._ lhe relh'cl,.d wave. II lhe l,,,.,h_r._ i.

hcillht"l"'rf"ctrcllvcl"r'R'1'_"-l'l"rll't'rl":ri'"r;"h: '',,",= -F 4M (i-- ,"" l)].f.41P ' (7,
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where A - -k,,_(a,_t/k_) and is an .'lrbitrary _cal- ohm-m haw. bee. mea._ure,I co.,q_tvntly (e.g.,
ink factor for a unit magneticdil.ilc, r i_ tie' tra.._- Riitid&hvrgcr, !')¢J7, Kvlh.r an,I I"ri_hkuecht,
mltter-receiver ._.paration in waw'lcngth._, h is lt,_l ). A few glacicr_ h;tw. bee, carefully mapped
the transmitter-receiver height above the rcllt'ct- and arc accv.,,.4blc for fiehl le_ts, Wt"_'lcrtl'd two

ing plate in wavelengths, and _ is the wavelength on which tu test thi' RF! tt'chniquu. _
in free-q)ace. The dielectric i)rolwrtics of ic- and s,.w h:tvr

iTypicai comparison_ between theory aud cx- been reviewed t)y |(,,':Lns t ill(15). "t'hl"diclt.ctric
periment are shown in l:igureC, The agrermi'nl ill prolwrllt_ of glliclal i(-t, Iliad ._lntw hlt_,.r Iwt.ll
the position of the peaks is vt.ry gtK.l. Although studit_l in situ hy Watt aml M.'txwl'll (ll.qdl) :t.,l
the amplitudes are on :m arbitrary _ale 'and art. by Walfor¢! (1¢R,8). Two parameters art, imp.rt:t.!
therefore not directly comparable, the ratio be- - the dielectric con._t:mt and thc Ios._ tangent. "L
twecn each theoretical and experimental peak is Ice has a relaxation in the audio freqtivney range,

approximately constant. I,'xperhnental deviations but unlike many dirh-ctrlc material.,_ ha.- no.c
from theoretical solutions are not large and are ut'ar the radio frcqucncit..s, llence, while the v;¢lue

primarily due to reflections betwet.n the trans- of its dielectric constant is frequency indel_endv.t
matter and either the receiver or the sides of the in the radio frequencies, the value ¢)f its toss tan-
lmx. The go_! agreement between calculated and gent i._ roughly inver.q,ly proportional to frr- :
meat.red curves was ftaken as the main I)r_f fluency and is strnngly temperaturc dept'ndent.
that the experimental arrant:emt'nt was satis- From I to 30 Mh/., thc value of the dielectric
factory to measure interference between various constant is 3.20:L0.05 anti is fairly independent of
waves, frequcncy, impurities, or temperature. ()vet the

:.tme frequencies, ./.tan 8='_'0.25 at t)°( ', but
ot.Ac.ut mm.o TeSTs f. tan 8_-_0.10 at -- I()°C, where [ is the (reqtlency

lstr_m'tio_ in Mhz. Although the effects of iml)uritit.'s , cracks, •
'Ice is one of the few terrestrial rocks with nni- air bubbh.'s, and free water on the h_s tangent are

formly high 'resistivity. Reslstivitl¢_ of 'lip to 101 not well unch*rstlmd, the valut._ f.r It_.-,_t._in gl:l

to %

! !
_t _ let.
,1, li
i I t ii
h ! i i
lii l r,
st_i I 1

I'l|, / _ _ "vii,, i\ ;,
II ! tt

,.'--.. \, ,/",, ... :
.... _l/...,,.,__ ,, ,, ". ,_

:

0 4 8 )._ 16 _0 4 il ih _ _

-- OiVaml m WV_II_k".

FiO.6. Typical theoreticalandexp**rimentalcurvesfor eill!nltlnn ill thegale .Ini,lel.liit.h¢¢t lint. it Iheoleticltl ':_
and tnltd lineis tcale model.Culves fora depth of 3 wavelenttlhlire Onthe left, anti ior_wavelt,nKtlt%on the right, l
No dieleei_lr ispresent. Scalingis difIerentforeach of the four curves. ,"

I
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2_mo

2100 _ ...... --- ............................ :

• ii

0 llm

Fio. 7. Crom-K.ctionof theComer Glacier,fromSwimseismicdata.

tier iceare not appreciablydifferent from thosein versesaway from the transmitter. Frequenck.'sof
pure ice. I, 2 4, 7, and l0 Mhz wereused. l,_, !1,, and lip

The inverse-frequencydependenceof the loss components were measured for both horiz,)ntal _'
tangent in ice implies that the attenuation of an electric and vertical maRnetic transmitting an- r
EM wave in ice is directly proportion-I to the tennas.
absolute distance, not to the number oi wave-
lengths that the wave travels. Therefore, the The Alhabasca Cda¢i_
maximum soundingdepth in ice free of scJttering The Athaba.._.a (;lacier, located in Alberta,

bodies is virtually independent of the frequency Camula, hasalso beenstudiedextensively: a _av-
used by any radio or radar technique in thv fee. ity survey has been conducted by Kana_wich

quency range from 0.1 to nearly 10IN)Mhz. (19_l),.,_.ismicanddrilling studies haw. beenm,ule !
by Pater_)n and _vage (l_x_), anti EM and

The Gdwem,Glatiff resistivity _undings have been run by Keller and
The C_'ner Glacier, located in southernSwit- Frisehknecht (P_I). A depth omtour map, re-

seriand, has been extensivelydrilled and mapl_'d constructed from Patersonand Savage and show-
_mically for the Swi_ Hydroelectric System, ing our traver_ line, i_ _iw.n _, Figure 8. The
and a iong_tndimdsection of the glack'r is shown thickne_ o( the icealong the traverse vari_._from !
in Fil_re 7. It is a deep glacier; the depth in the alxmt 130m to 281)m.

test area to the postulated water-table is al_)ut The Athaba_a (;lacier te_ts, run in March,
400 m and the depth to bedrock is _(N_m. it i. 1970 u_ed a crystal-controlled transmitter that

et_ectively a half.space for the interferometry was ,_..rated at frequencieso_ 2, 4, g, 16,and 24
technique. Mbe. Output powt_ was about one watt. It fed a

Equipment usedon the tesL%run in September, ribbon.wlre tuned horLsontal ek_:trle dilmle an- _
lg_), wu Imth simple anti portable. The trans- tenna thruuk,h s balun ft,t_l network. The an.
mitrer was a General Radio 1330A br:4ge mcil. tenna consistedof several numt_'r.22 wire_, each
iator_ which fed the transmitting antenna through cut to the resonant length |or a singlefrt_lueocy,
a |errite core I to I balun. Two type. of trans- lying besideeach other on the ice surfaee, l'_uch
mitring antennas were used: an untuned hori. wire was cut to the resonant length of one of the

. sontal electricdipole and a small (X/IO diameter) frequenciesin free _paee and connt_t_l in parallel
loop as a vertical maid,erie dipole. Output power to th_ bs_unfeed. F:achwire had to then becut t-
was lest than _ watt. The receiver was fed by between7._and 90 percent of iL_length in order
either a _-m electric dipole or a ginger sinllle-tum to re_ect minimum power ba_.k to the trams-
l-m diameter loop, with simple broad.l_nd mitrer.
matching to the _.ohm input Impedance of a This antenna was expeHme_tni, lind _vend
Olduy R,q30 communkatiom receiver. The r_ problems may have been aMoci_ted with its use,
ceiver output was read from a Hewlett-Packtrd The amount of dipping needed to retune the

i"'_ 427A portable voltmeter and recorded manually, wires after they had been phu:ed on the ke was
- lqekl wocedure consistedof recordin_ field lnsu_cient to account for the dielectric contnutt

strength about every | wavelength along tra. between ice and air. We feel that each wire was
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reactiv,_l),coupled to the tither wirc_, which then i_ ,4mide to re,lye thvl_retic_dl.v,and _uit,_ of
radiated enerl_'. 'rhercfore, the IonKcrwir_,_wvrc cur_'l_h_ve b_,encumi:ilt_l |or the/.._, I1,, aml H,
effectivdy long antenn.',.__Kreater than a half conll.ment, (.._'c,for ex_nqde, I"ik,ure')). 'l'hc.rci_
wavelen|th) for the higher frcqucncit'_,and ¢-uhl vet). k._x.!aKrc_mentI_twct.n th_w) aml eXl)eri
have radiated silmi6cantl)" off the urtholmmd mental result.qfr.m the (;twner (;lacier, Figurt, It)
direction. The antenna wa._I_r-lmhl.v n.t will _how._a t.vpi_l exl_,rim_,,zt.Icurve.hal n _,rie. of
coupledeither t- th,: .ul_urface .r t. tin, tr;tver_e thc'_wetical,_rvc._ h:r vari.u_ dieh.ctricr.,_._tant._.

direction,and q.zri.us rel|ectJ,m_(_ml,I h.ve l)_.t.n 'l'l.. interh.rcncv i_.ak, and trcml_hsalign I.'_t
r_cciv_! fr.m the .idt_. n( tl_eKla¢ier. with th(_" r;dculutt_! hw e_,.,;,_, H)' _mq_rimm

°rl_ re_,ivtq' aml the tiehl pn.:t_lure were _im- with curve, like thu_: in Figure 9, we h;_vec_tl-
liar to thoseu_edon the (;m'ner (;lacier with the mzztt.dth- I;w_ ta.j_[e.t I,) T)e It'_.,;than 1).()7al
followimldiff_rc,zc_..:A _maller ]-m.dmmvter Io. I) I() _.h_,
wasUSed|m If) and ._ Mh,_. Rcudink,__erv t•ken ()he intert_tinR |e•turv .f I_dh th_ tht_retical

ever), _ w•veJrnlith, t. ;t di,,tant'_'.f .)t) w_ve- #rhl exl)e_,mentalhalf.qmce c_rw,_ i_ that r_'ult._
lenlithsor until the _ilinnl w•_ tt., I.w t- d_'tcct, hw thc I1_ imd _ coml)o.enl, are iclentical, hut
Mint trlvt.r_._ wer_ run fn.n NEt. _W, al- the peaks and trouRh, o1'th,. I1_,C.ml_onent arc,
th_ • fc.wwerr ..n fr.m _W t. NK wilh the _,hiftt_l_A •way fr.m the tr.n_mittvr (._,_.F'i_u..

t_n,mitter cli_l:la_::_lh: I1." HW rml .f the trr. II). 'rhi, rt.lalicm I.,Is_evn I1.. i.lc'rh,r_.nrv Iml-
vr_' lira'. Ik_lh I1_ an,I II. t'_..Ixmrllh were trr._ in II. t_., and I1_ I,r-vi, lt_.;t I_t_i_ .n wlzirl:
t_t'., _ w¢'llastute/¢_ Irztvrr.,_., t. dt,tect ¢lrlmrturt.'_c_ tl.' lirl, l, fr.ltl I1.. It;d#

spsct,reqzon_ whi¢,tz¢ouhl h_ du,. t..uh..urfnrt.
ImmLl_ r_tlectio_ or _tt_r_n_ frz,nt surf_'e .r _h_ur-

T/_/_/.f-sl_ fac_ irr_ulsrttie,.

]f the bo_zd_ry betweenthe tint •nd second Therefme, in is hidf-qmce, RF'I run ei_ly be

Q hzyer_b not imlxwtant, the only wuve_ which use(I to detc.rmine the didectric con_t•nt of the
rem:hthe receiver are the direct wave_ thmuxh upper 5t).er if we know the po_ition, of the peak_
the idr (or vix'uum) •nd the dielectric. Thi_ case •ml tr-ulth_. Theoretical reuultsimlicut_ tlmt the
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• . v2./'.._IL..{ _ .2 4 6 a _ _ 2 _ 6 a ,o
DSTANCE_)

Fro. I !. I'Jmmtk'slhnlf-qmcecurv_ sml r_uullsfromtiN:(bwn_ (;hurk.r._mm_i, a bm',mma!rk'clrk'.dil,)k_
lit I0 Mhx."_i¢11 c,Jrvt5areI,u,dit.k'ctrk:(lmstanl i_ ._.2and•km Ilnf_nl 0dO.IU.I'c'uk,anll I rtmgn_,w Ilte
J_ com4Jonenta_ ddfttqlawayfnwnthelmnsmiltert_ Juslfwuvt'k'n_lh.

_retical curvt.'sdo nnt com_l,_ml t'ucdy to the 2r

,,,qx,rin_tal. At fl Mhz the."c_rv,_ are c'OmlAeS, k_ - , (;4)_m
lint the allh_'mt,nt iJ Ixttcr, t,q_iall), the lar_ie

peuk at Itlmut I wltvt'le'nlith_distance.At 2.1Mhz whm _ i_ the. fr¢'t.-_pm'rwava'h.nj_lh;amJi| the
tht.rt,art. man). i_qdr_and troulhs in Imth¢urvt'_ _b_urfn_. w_v,. hu, wuvt.numl..r _',,
We let4 the Jack .( correlation betwt't.n theury

IUNI _llt_l_111114flflJ| il_ _k_J)" I|tl_ |O IIlitny t%UNjoJm|y _f _fqb/ll

_tteml h.fk,ctlum in the t*zperinwntui curvt', k_ " _ _ V_e_ k,, (Q)
At 24 ]kilut the wsw4_Mth of 12.._;m i_ th_ _n_

sixe _ many ct,evam's and surface roulihneJ_ then the best frrquency wuvt,n, mtwr k i_
fixtures.

In summary, u the thicktwuJof the dk.lectric 2w
J_yevincft,ue_, the inteffm'nct, pattams chanjle _lr -, it - _o ,u (_/'*l - I). (|fl)
fr-m curvev with • few m_l-dri_nrd peek_ to _ i

curves with hilch _thl frequt-dck5 and no larjie The qmthd interfeyt.n_ wlivcJrtl_t|! _6 i_ tht'/t
peaks. Tht,_ ft_atureJnfl__ in bnth tht,oretk'sl

and t,q_.rin_tal remits. The fact t_t both I1_ 2r . -_-_.... • (ll) "
snd,_cuapom, ntllm.Sal,_ll).simtl_r.althml_ k - "A_- " _et -- I
the)' diEer in their 5he ,trturtuh,, int'ft.mu5 our

coldkJeu_ in the retch Jurtween th_wy and N- _nn., i
: pedment.

. )'. (:_+, (,,)tl
INllmPItlr_Alrl_N

D/dA_A" cemfa_ lind can be oi4uinod directly from tht. data. Far _

l'hb perimeter hi rn_)" to obtain directly from ice,h_l_l.11_
the data, dnc_, u d_wn ,,bov_, the direct air

and ,ulurfacr _av_ n_r mur_
/,,mint_rsct tht. /_njlv_

tn give • imttt.rn drprmlrnt nnl). on thi_ Im. _ Juts_ank,_ntcan Ix.tslimt_' in a qualitn-
rnnu_. If the sir wave hasa wuw.number _e, tire wsy from th_dunlm,'_ -f ilw i.,Jttrrn_ in tl_
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within the publi.qhcdvalue for icc. ]n the Atha- more coml)lux ge,.._.trit.s, and t,_ umh'r,_tand
buca data, reflections appear to disturb the two better the effect_of ramlonl .q'ath,rcr_.
direct wavc._too greatly to be able to use tllis
slmplifiedapproach. _(:KNOwLem;M_:N_

Wt"would Ilk,. to acknowlu41ge tile a._.,,ista,ee tl_

Depth the following: Mr. E. A. John.,,l_,l ol M IT's i
An c_.timate of the dielectric constant anti the Ce,ler for Space. Research, wire It, ill lilt' trails-

critical distance from the fiehl data can be u.a,d to mitrer used on the .Athaba_a (;I;teh.r ;and p;tr
estimate the depth, ttowever, an assumption ticipated ill lht'expedili,ql; I)r. !1. Ri;thlb, berger,
ab,ut the dip of the reflector must be made. The Mr. P. Fohn, and Mr. M. Aellen, wh,, pr()vidcd
meG,_l fails if either the dielectric constant or the advice on lhe logistics of the ( ;orncr (;lath.r; The
crit,cal distance cannot be estimated accurately. Department of Nalional and Ilistoric Parks

Branch, Calgary, who laW" us permission to w,,rk
ScalleHtlg on the Athabasca Glacier, and, alon_ with I|rew._-

One of the major unknowns in the application tcr Translmrt Company and thc Adminiqralhm
of the RFI technique is the effect of irregulariti_ of Jasper National I'ark, pr.vided much u.,_.fnl
in the mt_lium. It is rea.,mnable t- believe that the suplx)rt; and I)r. A. K. Sinha, wit. alh,wtal us t,
effects of irregular surfaces, i,homogent, itie_ use ._)nw (,f his l)rciiminary theor¢'lical cnrve._.
within the dielectric, and objects nvar the an- We would al.,a, like h, thank Mr, I.. "l'.,at,g lltlld
tennas could all perturb the measured data. One l)r. J. A Kong for l,finling out a sign error in
possible way to :emove small random effects is to pr_,gramming the lht_,retlcal equations.
appn,priately niter the data, and a simple run- Financial Snl)la)rt waspr-vided by NASA grant
ning-avcrage filter was used to enhance the pert,- no. N(:I. 22.(_P_-257and contract NAS_J-II._;41Jat
nent features of the Athaba_a (;lacier data. MIT with sul)conlrael_ at the Ihfiw,r_ity .f To-

An estimateof _attering is imlaJrlant to under- I'o111o;Rossiter thanks TI," I,tlnar Scit'llet" h,sti-
stand geologic structure. During the Athal)a_a lute, lhluslolh Texas fnr SUl)la_rlumler contract
trials the II, component, which shou,I tht_)retl- n(,. NSR 0_)-O._;I-(X)I.
cally be null for plane horizontal layers, was oh. This work is the .q.cond i)alwr ill a _'rh.s pr.vid-
served to |)e significant (though weaker'than the ing the bnckgr,mnd for Ill(. Stiff;ICe :,_h.clrieal
other comlmnents). 'l'herefore, il. pr.vid_l a I'r.i)erti_ l"xperinl_'_;l,Idanl.'d for II.' AI.,II. 17
meemurementuf the .._attering,which was cm_sid, lunar mi._i...
erableat the ;,;_her l'requencic_.The ._imilarityof
all the components measured on the (;orncr tilt- #ffIXEN('_q
tier on the other hand implit_l that starter,rig was Annnn. A. 1'., 1073,Radi. Jl|h*rft.rltnwlry *h.IHh WIUIIII

Ing:Part I Theon:tleal di_ru_._hm:(;e, qdly,dcs, Ihi.
not significant up to 10 Mi_z. i_ue.

(.'hung, D. H., We_iphnl, W. ft., and Simnu,ns, (;..
f_ONCI.UIilON$ Iq_l, l)ieltsctric I_ehaviorof lumtr _tml,h-',: I.;h¢lro

maKnelicpr.hirm nf the Innarivlleri.r,i_ I'rmx.t,din¢,_
1, The RF! technique is a practlcal method of the Stv.ondI.l,lnr Sfielwe ('mderenet.: Mrr I'rt.,s,, !

with which to study layering ill Iow-lo._ dielectrics ('a.d:rldge,v. _,p. 23Sl ZA00.
(tan _1<0.1 ). Evans, S., ICfx_l,Radio I t<:hltiflUts for the Ine, aurt.mentof ice Ihicknem_'The PnhtrRto,nl, v. II, It. 4(16410

2. Three paramete_ of the upper layer can be a,d _A.
estimated from the data: the diek'ctrlc constant, -- - !_6._;,I)iclectdc Itn)lwrlies ,tf ice al,I ._n.w a

review: J. (;laeh_t.,v. ,_.p, 7'/3 702.
the Io_ tangent, and an estimate of the thtckncsa .... Iq67, Pmllrt,'sarelmr! on echo sounding: The
to a reflector. Measurements of e-3.2 and Polar Re_,rd. v. 13.p. 413 420.
J.tan 8-0.? 0"in Mhz) for ice are in a_cement Cmhl, T., O I.mry., It. T., and ('nmld.:ll, M., II)11,

.qonwI:hy#a:alIirolwrtle__dApollo12lunar_lnldt%
with known result& ix Pn._,t.di,l_ of the ,_..ctmd1.unar._ie.ce ('-n-

3. The method is im inexpensiveway to sound fertmee:MIT l're_, ('aml,rldl_, v, 3, t_. 2173-21gl.
ice ihcets lel_ than a few hundred mete_ thick, Hold.r, W.T., ltmwn, R. ). S.. Rnbert*t,F. A.,l:mlrtk_-ann, O. A.. and UnterlK.vger,R. R., 1072, kttdar
and could be u,ed to stud.,,,Iow-lo_ layers on the h_l_ineof a s*'tltdome: (;tse,h),_te_,v. 37, p. _-O(N_.

O Jiract,k, (;. R., 1_)7, Radi. ,a,umling ,4 Antarctic Ice:
moon,

Rc.s.Rtq_.No. 6LI, thsqlhys, and PolarRr_. ('enter,
4. l_urther work is required to refine and qllan- t3nlver_ity.f Wimm_in.

tify the Interpretational proct_lurc, It) extend it to Kanasewich, E. R., |lKt3, (;ravity measuremt.,l_nnthe

......, ....... , _ J..,,.,:,,,Jl_ , .......... : - - ._:]-]_-_
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Attmbascs Glacier, Alberta, Canada: J. (;laciol., v. 4, Strangway, I). W., I_, Moon: electrlcal l)rol_rtie, o{
p.617--6.11. theUlq)ermostlayer_:,_.i.,v.165,lJ.I012 1013.

K_tsube,T. J.,and Collett,I..&, 1971,ElectricalTyler,(-}.i,.,1068,()bUquelur.attcrinKrud-',rre/leclivity
properties of AnoUo I1 and 12 hmar samples, in of the lunar surface: Preliminary results from I'_x-
_roceedinlCs of t_e Second l.unar .%clcnce(_on|t.reuce: |dorer 35: J. (;eol)hys. Res., v. 73, I). 7(_}9 762G.

t,'nlerberger, R. R., Hol_r, W T., aml llmwn. R. J. S.,MIT Press, Cambridge. v. 3, 11.2307 2379.
Keller, G. V., and Frischknecht, F. C., 1961, Induction 1970, Radio Ir_luency pro;r_gali,m in salt dom,:s I.

and [_lvanic resistivity studies ,m the A.that_c_& °['heo_y, lahoratory aml Gold nmi,urc,m.nt_ of al-
Glacier, Alberta, Cm._da, i_, (;_do_y of the Arctic tenuation: Pre_nted st ._;I';G40th Anm.tl [nt_rna -
(international Symlm_um): edited hy (}. O. Ram.'h, tion_[ Meeting, New Orleans.
Toronto, Univers/ty of Toronto, v. 2. p. 80V-&t2. Walford, M. K. R., ',_8, Field me_uremeuts of di-

Paterson, W. S. B., and Saval{e, ]. t'., I')6._, (;esm_.tr)' elect_ic. al_sorpt;on__in.Anlarctic. ice and _no_' st very.
and movement of the Athal,asca Rlacier:J. (;t_q_hys. high fmluencle_: J. (,lacml, v. 7, I:. 15994.
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O

i:

1975008236-421



i
_'G/a*-/_, Vol. tS,No.67, s074

t INSTRUMENTS AI_TD METHODS

i RADIO-FREQUENCY INTERFEROMETRY--A NEW
TECHNIQUE FOR STUDYING GLACIERS

By D. W. STIr^NOWAY,*

(Geophysics Branch, Lyndon B. Johnson Space Center, Houston, Texas 77o5 8, U.S.A.)

GENE SIMMONS, G, LKFoaa^CA,

(Department of Earth and Planetary Sciences, Ma._achusctts Instituteof Technol(_p/,

Cambridge, Ma._tchusctL_ o2Li9, U.S.A.)

R. WA'r'rs,

(Department of Physics, University ofTor, nto, Toronto, Ontario, Canada and Lunar .t_'ienev

Institute, ltouston, Texas 77058, U.S.A.)

L. BANNISTER, R. B^gglt,

(Laboratoryof Space Fxperiments, Center for Space Research, Massachusetts Institute of

Technology, Cambridge,Max_achmettso2t39, U.S.A.) 1
J. D. RznM^NandJ. R. Rossrraa

(Departmen! of Physics, University of Toronto, Toronto, Ontario, Canada) ]

[ AlwraA(_. A new method of elertmmallnetic round,nil in resistive electrical envirtmnwnts has been
developed for use in lunar exploration, it is applicable to the study of terrestrial glaciers and ice shcets. A

i horltontal electric dipole •ntenna on tire ground is used to transmit power at frequencies M"t, a, 4,R. 16 aitd
$1t MHI. A set of ortlmllonal receiving coils is mounted on • vehicle which traverses •w•y frtan the tram-

j mitrer. Field strenllth is recorded as a thnction of distance. Waves which travel above the surface interfere
with waves from the mbsurface, lgeneratinli interference patterns which can be used to determine the dielectric
constant, the Ires tanlltmt ,•nd depth to reflecting horhtom.

The technique was tested on the Ath•basca Ghteier in western Canada. At :, _t•nd 4 MHa the ice w•s
found to have a dielectric constant of about .'!.3, a loss tanllent (tan a) which is roughly invenely proportional
to f_.quency itivinlg val•es ofJ t•n 6 in the ran_. t,ft)._l5 to 0.35 (wherefls in MHa). These values corre_pood
well with the kn_n prolx.rties of ire near o _ C, which is a temperature typical of temperate glaciers. It has
been pomible to aetermine the depth ol'the ice but remlm are not alway| consistent with previous m'islni("•11(1
Ilravity su_ and with drill,nil. At frequencies of t6 and 3a MHz, watterinll is the dominant fi'ature ,d the
rtsula. At 8 MHI there is a transition from clear-cut interference pattmm to the .'_.atterinlt patterns. Fnm,
them findmlP, we tmllllest that the Athabasca (;lacier has • I•rl_" number of dielectric tcatterers with dimen-
sions less than about 35 m, probably due in larlle part to crevasses.

gttmmtt. IMtrfmmwlri_ de fdq_* rw_- _ _am, lb It_i_ #ear rtt_k eks IllUs. Une m,uvelh.
m_thad_ede mndal_.@lectronmlp#tique A traven de_ mil_tm _lect_ut_ _iatantt, • @t_t ima&,imt A I'u_,e
_m e_pmmtiom lunmres. Elle laXtsentedes po_bilitt_ d al_ilc•tion dam I tqudc des #acier_ ,_rr_trt_ et

c•lottet |htchtiees. Une antenne 61cetrique dipol•ire honmntalc aur le ml e_t utilim_' pour transmenre
de J'gtne_. sur de_ frttquenf_ de |, _, 4, 8, 16 er _la MH_,. Un erectable de bobines rctcel)trlce_ di_l_'s
ortlt01pmaJenmnt eat mont_ mr un v_hh'ule qui circule k distance de I'ttmetteur. I.'intemit_ du chanop ,_,t
ram•rate tm font|kin de la distance. I,vs .nde_ qui _. prop•lien| art-detain de hi aurface u. etxlt|;ila.ttt rivet
celles vt,nues de desmm la surface, I'll_i_elltdr;tlltdt_t interf cesdont cm peat st. m'rvir lxmr rah'uh'r I;t
comtantc di_lectrique, ht pert,,en tan_entc el la Imffmxieur de_ h_wiaom r_flecteurt.

fin I emay_ cette technique dam h, Illarh'r de I'Athahara dam r()uett Can•die•. A l, _tel 4 MID., *a|
at trouv_ Imur Ill flaee une corot•ate d;_lectrique de _,'t, une pert|, de tanllente (all _) qui |..st Kr*mi/,renwtlt
invem'mmt preportlonnelie & la frttqm,m e, dormant d_ vale•r• deftl _ de I'o_re de .,aS t o,:t5 (,.', I e,t
en Mils). (3u vale•art ctm_pundent bien avec let propri_t_ connue_ de I• Illace au vt_itmlle de ,_ t:,
tempttr•tu{e, typiqur des |l_rlecs tempttr_, th_ a pu d_terminer I'ttpaisseur de I• illm'rnmia Its ca|suit•is

" n¢ tmac0r4ent paa toqjoum •vet: I_ am:iennes nwsuret shmiques el Ilravitalrrs, ni avec let li_rd•llet. Ptmr
k't fdquetma de 16 et St_ MH_, la dispenkm eat ie trait dominant d_t r_mdtat_. A 8 MHa, il y a urn. trami.

t zion entre un net ph_tto,ntfw d'intecfttrence ct la dispeesion. A par|it de ees coma•atom, nout mtUp'rmm
que le lllacier i'Atludmsca politic un IFat.t nombre de dispermnm di_lectriqum me••rant tt.tinJt d'envin.|
35 m, probabk.mmt en calm•, ptmr une larlle part, de la I_t_,nee dr crevua.s.

i _ _1 * IPresent addrem: I_rtment of (;enloKy, t +nivenity of Toronto, Tortmto, ()tttnrio, Cattada.

!ttl'_

==, CIHO BLANK ,11
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ZuL_ltmNrAmUmo.Hed_'e_m,z.lmSn'fa,_ -- eimeme_M#gkRlef_" #1_s_m. FOrde.
GebrauchbeiderEffonchungdesMondetwurdeeineneueMelhodedeetiektmmqm-ti_hen Is:tunKdurch t

wid_amdd3h_ O_hemchkhten (mtwickelt. ,_abcstehtdie M6111ichkeit,damit terr_tri_(:hr(;let_.hcr _ :!and FAmchildezu untermchen. Fine ho_smntaleelektrischeDipolantenne am Bode. wird dazu benutzt, um
in den Frequenzen yon !, t, 4, 8, 16und 3s MHz au_menden. Ein Satz von orthc_pmalen I'.n,p- i

fmqlmlmlenist auf eim.m race yore Sender wegbeWellrndenFahrzeug befestlgt. Die Veldst_rkewit:! als
Funktion dee End'ernuagaufgezeichnet. Die Wellen, die sich auf dee Obcrfl_chc und in den darunwr i
liellenden Schichten ambreitet, e_eullt Intefferer_mmter, die zur I_timmung der Dirlektrizit_tdumstante,
dee Vedmttanllente und dee Tide belieb/llcrReflexiondmcizonte verwendet werden k6nnen.

Die Methode wttl_leam Atlmbmca Glacier in WeNkanadaerpmbt. Bei I, a und 4 Mtlz wurde for da_
F,is elne Didektrizitituko_tante yon C.$,3 und tim" V_lmttangente gefunden, die angenAhert umgrkehrl
.pt._.i_tl lttr Ffequenz ill ttndWertevonf tan 8 im Berekh vo. o,a5 blso,35 (w.btifin MHz all_'gebe, i
m) erBibl. _ Wert¢ stimmcn gut mit den beka.nten Eil_mchaften yon Eis .she o" (:. ch'r, haraktcrhli-
.then Temperatar tempedertcr Glcuch_, tibcrei.. Ea i_t m_lich, die Ei_dlckezu bt_tit.ltH.ll, ;*[wr(lie
F_leb_i_ stehen nicht imm_ in I_inklangmit f_iht,r¢ll Bohrul|k-rt I_l_ie _lDiWht'. uod gravi.wtri_.l.-t,
Memunllen. Bei Frequenzen.yon 16 trod 3_ MHz find Streuungrn das Hauptcharakteri_tikumth.r I'_p.b- !
nime;bel 8 MHz liegt tit. UIx-qlanlgyon wohldefinierwn lnterfrrenzmtatent zu Stn'umtater.. Auf(;_.d
die_" _ achlimen wir darauf, dm im Athatmca Glacit_' rim' Iff_me Anzahl vm_ Slremd_'ktr. i
vm'handeniq. _'t Dimcn*hmenunter¢.35 m lit'genunddie vemmtlich xumgr,_u.. "Vell(;letu-lWr_lmhen
zuzmchreibensind. i

I NTaODUG'TION
\

The physical basis of the "t_,o interferometry technique was described in detail I)y Annan
(1973). The practical application was di_ux_ed by Rmaiter and others (_973)- The pla..ed
me of the technique in the exploration of the moon was dc.'_cribed I)y Sintmons attd others
(t97_). Only a brief introduction to the experiment is given here; the reader int(.rt_ted in

: further description should consult the reference_ above.
A horizontal electric dipole is laid on the surface and used to transmit elcctromagned_

energy at frequencies of t, _, 4, 6, t8 and 32 MHz in sequence. A coil mounted on a vehicle _
is used with the receiver. The vehicle is moved away from the trammitting antenna and the
field strength at each frequency is detected and recorded on magnetic tape and on a strip
chart recorder. O.e axis on the chart recorder is driven by an odometer, producing plots of *
field strength as a t_-ction of distance from the transmitter.

Energy is pmpagat "d from the transmitter to the receiver in three intportant waw_ (Fig.
ta). The tint is the wave above the surface of the ice, Its velocity is the speed of light in _

vacuum. 'Ihe second wave travels just below tl.e surface of the ice. Its velocity is c_mtr, lled ,:
by the dielectri, constant of the ice. ','he interference between these two wavt.'s is u.,a.d to
determine the dieh'ctric constant. The third wLve travels through the body of the ice and is

•_ reflected from the glacier Imttom. Its interl_rt.t ce with the other waves causes modifications
to the interference pattern which are indicative of the glacier depth. It should Iw noted that

: this wave is reflected front the Imttom at different plat_ depending on the separation Iwtwcen
source and receiver. Since interpretation depends on characteristics of the whole curve, and
fince glacier depth may not bc constant over the whole traverse., the nwasurement reprints
mine mrs of mean depth ahmg the traverse line.

8UllSUI_AC[WAVE

_ Pl.E¢'r[OWAVE

Ik_mlB_fm _ _ tmmm_ldj _lew tat smfm is _ t_,l_tdt. _ lira mires _ _11_ m_titi_s md :i:

(

.... ; ........ ..,. L ¢
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TRANS,MITIER R[C[IV[R

I

,.
HZ°

BROADSIM
ANTENNA(11)

TRAVER_ H E

L! ,
' 00-.:ENDFII_

AN11ENNA(D HZE

Fit. _. (t) P.d_/m of reu/e__ _ t,mmOt/q _. T_ .nOo_,q,e.qo, dw.k_dmmjimmL,,_s4V_., _,_
memlmmmum take, _ _ Ok¢._i_e. TAt _,rmi_ £ _el,_ akat tlw_id _*_t, _ m_.wn¢ r_tk

i rrOwrk tksi,ldfwr_. Tic _ p, 4 _ _ we#lintux,d ina ri_kt.kmmskdc.vl_al¢_fdbmerJ.ntrm. "Fitslralmi_ m_xmasmeigtmll._wii_uu awlt_nr b a_ _ _eof,.m_l _¢,,u_,.l'_kIrate,ram._tiv_t.l_.tat
tr_mi_/_ in tileu_ diam imI"ipn _.

In the present imtrumentation, two orthogonal transmitting antennas are employed.
Three orthogonal receiving coils are mounted on the traverse vehicle. By trmmmitti,g and

' receiving esch of the pmtible combinations in _cquence, six separate pieces of infot marion are
recorded at each frequency (Fig. 2). With six frequencies, 36 separate records are ohtained
m a function of distance from the transmitter. If the traverse is run orthogmu_! to one of the

, transmitting antcnnm, then three of the fix components are maximum couph.d and carry the
interference patterns. The other three components are minimum-coupled. Ideally these
componentl show near-zero amplitudes; in practice their amplitudes prove to Ix" usef, I
indicators of scattering from the subsurface or of rellectiom from lateral inhmnol_neiti¢'s s,ch
m valley wills.

One way of interpreting a set of field data is by matching theoretical curves with the
observatiom (Annem, 1973). Families of theoretical curves for various dielectric comtants, Irm
tangent_ and depths to rrllector have lwen computed. To date our theory is adeqoale truly
for a tingle horizontal reflector in the subsurface. It may be a dielectric interface or a perfect
(conducting) reflector.

We ch0te glacient m the test area for our lunar experiment because the high ,.le_,trical
re_ttivity of ice is nearly unparalleled in other geological materials on earth. Because lunar
rocks are expmed to a vacuum and are exccedingly dry, their re_stivity should b_. similar to
that of glacier ice, and quite unlike that of terrestrial rocks.

_mm'ml'uim I .-- ! ,.z I ,ira I ,..Z I ,.z"I oe, l , I
i ml tl ..I t I i It !,. Itl . ! tl I I s I _ I e I I

_mwm _v_t_z_z__"_s_d_e__L_e_*_e_ • I

Ilwa lOOm aoo_

• l" ''--' -"I

, ,_z,_ _ _,. _,_.
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"rm oL,u:um

There have been several previous studies of the Athalmsca Glacier. Most importmlt front
our viewpoint are the results reported by P•term_ and Savage (196.j) , Keller and FrLu:hknecht ,
(19_l), _ Kanasewich (1963). These studies include the results of drillinK, _.i.qmic. and
electrical soundings, •nd gravity surveys. Their results are illustrated in Fil_m" 3, whi,:h
specificially shows the depths determined by drillit_. There are uneertaintie_ in tlw lm.riu.
values of the thickness, except in the immediate vicinity of drill holes and seismic u,tndittK
points. In particular, note that Keller and I,'rischknecht (1961), on the I_qis of m, eh,ctrh'al
sounding in the south-eastern part of the glacier, suggested it fairly _hallow deplll. 'll,is
rounding is in the general vicinity flour sites 2, 3, 4 and 5. Paterson and ._vage (,gl_t) ix)it,t
out "that there is some evidence that it bedrock shelf my exist on the right (s4mtheaxt) edge
of the glacier ... ; the seismic evidence, however, is not sufficient to establi.qh its existelu'e.
Such a shelf Ires been indicated by the resistivity surveys of Keller and Yrischknet.ht (HI6I)
but not by the gravity surveys of _ieh (196,3)". We will resume then'Gwr th•t fla.
drilling, seismic and gravity results are the most definitive.

Wltt and Maxwell (,gen)memured the ,.In.trlad propertlrs uf llw tlieier ia" im dis ,,l
the Athsblutca Glacier using frequrtu.les fr,ml _t IIz tn luo kH_. At tlw hlgh-fmlueta.y limit
they showed that the k_ _ • dielectric _msl_nt of Idmut 3.a. This vnitw i_ typical llxr
pure ice, and in general the value is frequency and temperature indq)em_ll fnms I;m kHz
to, oeoMtls (Evan_ t965;Gudmanmen,'gT'). Alto thedepd_oft,h,_. ice,a,,_wr_l
bymdir.mmtt_mil&ddmldimagreewellwith drillingremlll, if • dielectriecemumted"3.t
hmumed tg t).

The lem tmqlent cd'tee is controlled in this Ih_queuey _ by the tail _d"the well-knnwn(
!-- t_,Immtleawhich occun in the amUe,4keq_'r,cy nmlle. In the rsn_ of our experiment( t-3t

Mils) the lees tsngem is tnvenely _ to frequency,, so that (/tan 8) is nearly a ,
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' comtlmt (Evsm,,965;Gudnumdsen,'97J). However,this co•tam isstremgly del)endrnt ms
temperature; its value is about o.3o It o ° C, • typical temperature for • temperateghucier.
and about o.m at -90 ° C, • typical temperature for polar ice sheets (where/i+ in MHz).
These VSJlLI_I_1 _ tO •tteflul/ion r•tes of o.o48dB/m st o°(: Imd n.ol6dB/m at
-•to ° C. This latter value issJmlhtrto the values_tlrnalrd byGudn_ndsenfor theGreenland
iced_cet.

The attenumiemdistanceof elcclrOmalpactic energy in • dielectric is:

¢

where • b the diel_ c_t and c the velocityof light in v_umn.
The intorfermn_ry technique requires waves which are of similar mnplitudr. If • waw.

reflected frmn the 8hitler bottom is minute in _lxwimn to the other w_ves, then it is
unoimorvabie. ]ncremtng the power of th_ trmwnitter is ed'no benefit, for the relative power
of the wsva re•alto unehered. The •llentuuion of w&m in the ice comequendy limi_ the
detecdon el"the bottom reflector to depths of • few hundred meters in temperature I¢lacien
and • kilmneter or two in pohu" ice sheets. Became finn _ is nearly cmsstnnt, the depth
penetration is not freqneney-dependent; rather it is temperature dependent.

GLAGIBRDATA

Datawereculler'tedat ,evenmajorsiteson theglacier(smdem,-8 mi Pill.3)- Intrrlm'm-
: lieu was baaed on data from the tranmdttlnll nntemm necmal to the travene line. llmh radial

(Ho_ andvertical(H,n)component,wereexamined(Fill.tb). Thetangentialre•present
_H4n)wouldbeu_roifno hteral reflectlemwerer_ved. "!_ ,ruempflt.de of timcom-

e Imaem _ il_kative of deplwtures from the,e ideal candJtlom. ']'he compmlents from the

an.ttm Ixmdlel to the._ line (H,,u, H_z, H, x, till. tb) wereaim eta•led but w_e Imt
specilk_ly reed in the mterpretatiee. Mnre mphimlcatedfuture interpeemlimuwill pmlmhly
meall thedm.

FlSure4 dm_n the H," andH." com_u _m me tmvme (Runt6). Flr,_
iJJultrate_the pmcem efintelqp_tinll It pmfde for one eompmuml. A ,et of theo_tiraJ master
curves is eompmed with the data. Our best fit in this ca, e is for the dielectric constant of 3.3,

t efo.o 9, and depth ef st.4t5 wavelen_hs (iSt m); • perfectly reflecting Ix_lom is
Such an iaterpeetmim is no* alwayJuum_ Theremy be _ difE.rent

eombtnmimu of persmetm which appear to fit the data equally well. In such cam the
redandancyer,eva'alcompment,nnd,everalrrequenetaeomaintoplay.Thecrtter_ er
emlteney is appliedto ,elect the mm_ detaud_dm fromthevsrtou,pmibi_ide,.

Theme,t cmubtent,et of interpre,attomfo- Runt6 i, udmlatedin Table!. Therei,
8rae_ er_ i. thein_ d,_ for,he low0equeneks(t ,,11 tMeb)

becsmethecem_lnvekwer&mute8nnd8enemllyIm de_tttve_. h dmuldbe
mud •ha, d_edep,hadmme_ be•wee•eurm rm:ee_the mw _,he Indlvldml
depma_mm ('rd_en). Tt_JJpe_xd_he•he d t_enm-ldad8bderp_me_; tSe

d_b pw dma_y Jadu_ din_ dm. it isme
lelMd_ M'cu_ dupe to mun chmsu In _ nnd dectrlml pmmneten. It is this

• mmltlvlty wldeh _umes the e_re¢ estlmate fro,the Inteqwetotlea efa dqle pmlUe m he mmll,
_,Mk the _ betwe_ eums may ladkme mmldemMyM_er •.or. Pm_t

O 8tudi_,re Mmedat fmdin8m to Im..Iwm:emthedamto reducetheirtemhivhyto mudl
, p.,an_ d..qm.

Mt
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At 8 _I'Lt the f_4d ctn'v_ cont,_in m•ny J_ore JJttctu•t_ that the tJueoretk'tl curvet.
"Fish is ms indicttkm of the influence or inL.mtogeneitles within the 8J•clcr or of"the surfat.e

roushnem, Scat_ cmuide_bly smmlcr than • wavelensth will influence wave propagation
very little, while throe exceeding • wavelength in size will nmdify the fN'lds c, mkh.ral_/. ,
The sppemm_ of wtvelength-d_ disturbances st 8 MHz (_ :, 37.5 m) indiettet that
internal inhomogeneitJes in the Athabmc8 Glacier sre seldom larger than m.vt_'al IMts td"
meters, The strong disturhsnee in all Atlmtmsca dam at 16 mid 3_1Ml4z (A Ifl. 7 m aEll

9'4 m) indicates that sratteren dthis llze or lem are con,non throu_xml IJw glacis. !
_t

I

i '
g,sde

0 0 tO
tANOI (WAVIELIENGINS|

md CMHz m dbm. Vt_ ,t,_ _ ttm,_ olm#_ _ _ t_ b 7_tlRm _J.

TAms l. Imnmmurrm_m m _ _o Hem 8mTM.fbV831_:_ I_
DiekctHc_mmu k_ I_n _ ._-3

' "" '"
4 HeH" _: ,-lw_4 e4_:_ AI_

,_aeeff jNe 0u

T_ut II. Pmmmmt w omuvu_,u, m'

JMIIh • MI'_ 4 MH_

-) INebeu_ eemutm _:o.oe .t:o.t _o,81an unql_ t:o,m :j:o_j _:n_e5
Depth m :_8 ._8 _4
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_ODRL RILIULTS

I One particular type of scatterer has been investigated using a high.frequet_:y analog
scale model. The modeling medium was dielectric oil with a dielectric constant ol"2.2 and
loss tangcftt of 0.002. Because these properties differ somewhat fr.m those of ice, the rcsuhs
must be taken m qualitativc indications only. The modeling wavelength was a_5 cm.

A crevLqe was simulated with a styrofoam wedge (Fig. 6) (the dielectric constant of iow-
den6ty styrofoam is approximately |). The field-strength profile shows a high-frcqueney
interference on the side of the crevasse, nearer to the transmilter, and a minor di,ninution ,f
field strength on the far side; Similar features are pre_'nt on the curve from field data showa

patterninFigurewas7,notalthoUghmadeinP°Sitivethelield.identificati°nof the particular creva._e rcslxmsible fin' this I

- tall

m
W

0
L

o

it

_> •

CREV

I i i I I I

o 5 I0 IS 20
DISTANCEFRO&. TRANSMITTER

(WAVELENGTHS)

F/a.7. P_,,il4e/K_/m_,muN i_]/dddi_,.

DIscIumloN

The best fits to all data were obtained for dielectric constant values of 3.3-ko.i. The loss
tangents for the best.fit curves were from G.S8 to 0.26 at _ MHz, o._ t to o._8 at a MHz, and
0.06 to o.ta at 4 MHz. The mean value forftan _ is approximately 0. 3.

Depth determinations have been made using the average values of the mint c_htent set
offite at the various statiom. These are tabulated in '/'able I11 and are located on the map of
Figure 3. Except for statiom 6 and 8, deeper depth determinations are obtained at stations
lflgher on the glacier. Stations 3, 4 and 5 show particularly consistent results in compadson ,
to drilling inl'omm_on. The apparently high depth gradient between stati(m a and a nearby

drill hole (depth m) be real, a result ofextemiom of the bedrock topography currently7S may

being eap0_l at the retreating terminm, t

t
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4 S ,94
5 S it()

N tf_iN iTS _

N aM

The interferometric depth determination at station 7 is not entirely inconsistent with .L
drilling results, althou_ the indicated depth is probably too shallow. This determination i
was fairly ambigtmm became reflectiom from the bottom are weak in such deep ice. _,!_
A further complication was the short trsver_ length imposed by rough surface con. _
ditiom. _

The mint inconsistent remits occurred at stations 6 and 8. These stations were near the

tide of the glacier, m observed reflections might not have come from directly below the _
travene line. A hnngit,g tributary glacier enters Athabmca Glacier a short distance above
these statiom; morainal material within the glacier may therefore have adversely affected •
the observations. !_

qJ

CONC_TmOm

Radio interferometry appean to _ reasonable estimates ol'glacier depth under raw,rabie
• conditions. Erroneou_ estimates can be obtained when internal structure affects the observa-

tiom and possibly when the bottom slopes too much relative to the surface. The limit of
detectability of the bottom is about 3o0 m in temperate glaciers.

At the same time, the radio interferometry method gives an in dtu measurement of both the
dielectric constant and the loss tangent of the glacier ice. Hence there is no need to assume a
dielectric constant in order to obtain a depth estimate, as is required by radar reflection
techniques.

Scattering signatures in the curves may indicate the position (and pmdbly the orientation,
if profile_ are made in several directions) of crcva_es or other near._urface _mtterers. 'l'his
detection is probably ponible through many meters of mow cover, although it was only tested
on bare ice in tl_cablation zone of the Atbabaga Glacier.

At a field technique, radio interferometry is fast and simple. It requires an imtrumented
vehicle, but data collection is rapid if the glm'it:r surface allows for e_y driving. Operation
on mow-envered portions of a glacier is probably easier than on the rough ice surface of the
ablation rune.

lntetlwetati_.a is fairly rapid. Gollectiom of theoretical curve_ with appropriate para-
meters _ be made up before the field trip. Daily comparimn of the field data with thc'_e
curves allows comtlmt monitoring of results. Sophisticatedanal_ntisand procc_i.g re.st, of
course, wait until a computer is available.

Methods ate being investigated for making the data lm sensitive to small variations of
Imrmnetert. Thb will require computer proceaing of the data. Current theory is I_ing
extended to lnvettipte the effects of sloping bottonts and other more complex geometries.

(-') The ultimate aim of the dam analysis_ it tO usethe full complement of redundant data
_-- to minimise the ambiguity of interpretation,

¢t
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_ Partial support of R. Watts and J. Rmsiter was provided by the Lunar Science lmtitutc, i
_ Homtc_ Texas. J. proctor calculated the theoretical curves used in making thc fits. J. Kong _

and L. TrunK, of the Department of Electrical Engineering, M.I.T., pointed out a sign crror

in our theoretical curves which would have invalidated our results, i

MS. n_ieed $ Ft,bnunr3 u973 m,d in reuis_ foTm _3 AuRust :973

REFERENCES i ;
Annam, A. !t. 1973. Radio interfemmetry depth rounding: part I--theoretical discum_io., t;t_Ts_J , V(d. :IE, _

No. 3, P- 557 "41_. e _ 'EvIu_S. 1965. Dk'4ectricpropertiesofioeandmow--a review. Jmmm/efG/ac/e/q_, Vol. a, No. 4_, p. 77.i 9"a. _
Gudmandsen, P. |97s- Electronmllne_ probing of ice. (/m Bahar, E., m_/o_r_. /_nclnmwmgm_/¢.e_/q m

Ecqtt3s_. Boulder, Golem Press,p. $es-48.) _ .
'_ Kanmewich, E. IL n_. Gravity _tson the Athabmka Glacier, AlheTta, (_anada.._qnm/eft;/ac_,

Vol. 4, No. SS, P. 6n7-3,. •
_, Keller, G. V., m_ Frischknecht, F.C. 1961. Induction and galvanic re_ufivity studies o*1the Athabasca Glacirr,

Alberta, _mnada. (/_ Raasch, G. 0., _vl. C,eelq_ ef _lie A_rtlc. _s of _lt_J_rst im_nt_imal s._q_iam M
. Arctic _, Add in Ca/A_a_, .41/m_, .Tammr3 :t-_$, _96o. "F(wonto, University of Toronto Prem, V_d. ,.I,

p. 809-3,.)
Patenon,W. S. B., _ SaValle,J. C. 196"3.(k-ometryand movement of the Athaba_a(;lacicr. J_nm/of

CTm_._s/ca/Jinm,_,Vol.68, No. aS,p. 45_3-_o.
._ Rmsiter, J. R., and _ter_. 1973. Radio tnterfecomelry depth rounding: part [l----experimental resuleb by J.R. _ I

Romiter, G. A. LaTorraca, A. P. Ammn, D. W. Stranllway and G. Simnnom. G_.3_/cL , Voi. 38, No. 3, i 'p. 581-99.
Simmom, (3., md_tm,s. 197_. The Surface Electrical Properties Experiment, by G. Simmom, D. W. Strangway, _ _:

L. Bannister, R. Baker, D. _ubley, G. l,aTorraca and R. Watts. (l_ Kopal, Z., and _trangway, D. W., t_. Lum_ _!

_. Pmmm_ of a _m_tt _ _ LamuwScie_ Imatil_lt, H_slm, Texas, t_-:t_ O¢_&eT u97_. l)ordrecht, _ 1

D. Keidel, p. st 7_. t

_f/A_ Xalaia_u/Bmm_ efS/amd_d_ (Washington, D.C:.), Sect. D, Vol. 64, No. 4, P. 357"63 • _

1975008236-431



tJ

The Electromagnetic Response of a Low-loss,

2-Layer, Dielevtric Earth for Horizontal

Electric Dipole Excitation

1 2 3
A.P. Annan , W.M. Waller , D.W. Strangway

J.R. Rossiter I, J.D. Redman 3, R.D. Watts 4

1. Department of Physics
University of Toronto
Toronto, Ontario

Canada

2. Lockheed Electronics Company
NASA - JSC, Houston,

Texas, U.S.A.

3. Department of Geology
University of Toronto
Toronto, Ontario

Canada

4. NAS/NRC Post-doctoral Fellow,
Johnson Spacecraft Centre,

Houston, Texas, 77058, U.S.A.
(Presently at USGS, Denver, Colorado)

1975008236-432



Abstract

I "" The use of the radio interferometry method requires a i
detailed understanding of the nature of electromagnetic

I wave propagation in structures composed of materials with lowelectrical loss. This paper presents the results of a

detailed experimental and theoretical study into the re-

sponse of a 2-layer, plane-stratified, low-loss dielectric

earth. The technique used to construct a scale model with

microwave equipment to experimentally simulate the 2-layer

structure response is discussed. The wave nature of the

response derived from the theoretical investigations is

used to interpret the features of the experimental results.

The experimental results in turn are useful in demonstrating

the reliability of approximate theoretical solutions for the

electromagnetic fields about the dipole obtained by the normal

mode and geometrical optic methods. Such features as the

modification of the dipole radiation pattern when the an-

tenna is placed at the interface between media of d_ffering

electrical properties and development of guided and leaky

modes in the layered structure are examined in detail.

Introduction

The radio interferometry method, previously summarized

by Annan (1973) and Rossiter et al. (1973), is a useful

geophysical method in g_ologic regions exhibiting extremely

high electrical resistivities. In this context, high

resistivity implies that displacement currents in the media
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must be considerably greater than the conduction currents. 1

I In terrestrial materials, this situation is encountered in "

ice-covered regions (glaciers, [olar ice caps) for radio

; frequencies of the order of 1 Mhz and higher. Lunar

materials also behave as low-loss dielectric materials in

the Mhz frequency range (Olhoeft et ai.,(1973). Katsube and

Collett, (1971).

The original papers, mentioned above, presented much of Ii
!

the preliminary work conducted to study the feasibility of

the radio interferometry method. Subsequent to this work,

a lunar experiment was designed, constructed and carried on

Apollo 17 (Simmons et al., (1972). In order to be able to

make a coherent interpretation of data from glaciers and the

Moon, a much more detailed understanding of the basic features

of the radio interferometry method was required. An in-depth

computational analysis of the theoretical response of ideal-

ized models was made and these responses were simulated with
i

a scale model experiment to check their validity. In addition,

full scale experiments were conducted on glaciers in Alberta

(Strangway et a1,(1974) and in Alaska (Rossiter et al., see

companion paper).

In this paper, a subset of the theoretical and scale

model studies are analysed. The purpose is to present a

detailed, documented study of the response of a 2-layer,

low-loss dielectrlc earth for excitation by an electric

dipole antenna laid on the surface. Some preliminary results

O of the scale model and theoretical analysis are given by
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Rossiter et al, (1973). In the course of this study, the

_ theoretical and experimental work were carried out together

I in order that each could be used to confirm the other. Theend product was an in-depth understanding of the intuitively

simple, but complex in detail, physical phenomena involved.

Idea!ized 2-Layer Earth

The _dealized model studied is shown in Figure 1. The

2-layer earth is characterized by the dielectric constants

Ki and the loss tangents 6i. Variations in magnetic prop-

erties are not considered; all regions have free space

permeability. The cartesian coordinates (x1, x2, x3), the

associated unit vectors (el, _2, _3 ) and the cylindrical

coordinates (_,_, z) are shown in the diagram. For the

computational analysis, the earth is excited by a point

electric dipole located at the origin of the coordinate

system with its moment aligned with the _1 axis. In actual

experiments, the source is a half wavelength electric dipole

antenna. The time variation of the dipole moment is of the

form e-jmt and in all subsequent mathematical expressions

_he time dependence is suppressed.

In applying the radio interferometry method, the field

strength about the transmitter primarily along profiles which

run radlally outward from the dipole. The profiles commonly

used are denoted the broadside, (B), and the endfire, (E),

profiles. The B profile is run radially out from the dipole

O normal to the direction of the dipole moment. In Figure I,

_ t!am_Lmmuunul_n_wq . _ _ M _ n m _ Im m
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,-- the B profile is along the e2 axis while the E profile is

along the el axis. In field applications, the 3 compcnents

of magnetic field are measured. In the scale model measure-

ments, electric fields, primarily Ep and E_ are measured

due to the difficulty in constructing satisfactory magnetic

field antennas. The field strength along these profiles

exhibits maxima and minima at various spatial positions due

to interference of waves propagating with different hor-

izontal phase velocities. The position of these maxima

and minima and _ _ rate of decay of the fields with distance

are indicators which can be used _o infer the electrical

properties of the earth and layer thickness, i

In the following discussions, all spatial dimensions

are normalized in terms of the free space wavelength W.

I All propagation constants and wavenumbers are normalized
in terms of the free space propagation constant k = 2_/W.O

Mathematical Formalism
, i

The mathematical formulation of the electromagnetic

r_sponse of a plane layered earth is well known since it

is a standard boundary value problem (Wait (1970), Brekhovskikh

(1960)). The difficult part of the analysis occurs when

actual numerical computations of the response are required.

The fields are expressed as Hankel transforms (or 2 dimensional

Fourier transforms) which cannot be evaluated analytically.

In all but the simplest case of a whole-space, approximate

methods of integration must be used to extract useable

1975008236-436



_ results. The most straight forward method of obtaining

i numerical results is to numerically integrate the Hankel

transforms. Other methods involve limiting material prop-

'_ erties to special values in order to reduce the integrand

to a sufficiently simple form that an analytical evaluation

can be made. The other alternative is to look at the physical

{ nature of the response by use of approximate solutions which

I can be obtained by manipulation of the integration countour

in the complex plane. Two solutions in this class are known

as the geometrical optics and the normal mode solutions.

The details of the applications of these techniques to

low-loss dielectric earth models is discussed by Annan(1970,

1973), Tsang et al (1973) for various dipolar excitations.

In the following discussions, the geometrical optics and the

normal mode solutions are used. The reason for this is that

sufficiently accurate results can be obtained in a very

economical manner. The computation cost of numerical

integration rules our this method for all be very particular

cases under consideration. Of the two solutions obtained by

normal countour integration, the normal mode solution is the

more correct solution. The only approximations involved in

the normal mode solutions are in the analysis of the branch-

line contributions which yield lateral and inhomogeneous

waves associated with the boundaries. The actual "normal

mode" part of the solution is exact within the computational

error of evaluating its contribution. The geometrical optics

I solution involves asymptotic expansions for each multiple
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reflection and has built in approximations from the first

step of analysis. The main advantage of the geometrical

optics solution is that the response has a simple physlcal

interpretation and is economically computed. As pointed
I

Out by Annan (1973), this solution can only be used when ]

spatial dimensions are on the order of the wavelength, or [

attenuation distances in the media involved. In a low-loss I_

dielectric medium, the attenuation distance (distance for
I
i

a field to drop to i/e of its value) is given by W/_J_tan 6. L

The theoretical solutions for the electric and magnetic

fields on the surface of the 2-layer earth are sunmmrized in

Table 1; the fields are expressed in terms of electric and

magnetic Hertz vectors which have only vertical (_3) com-

ponents. The complex radial wavenumber plane and integration

contours are shown in Figure 2. For the expressions in

Table i, the geometrical optics solution if obtained by

expanding the expression in the denominators i

whereas the mode solution is obtained by solving the *

transcendental equation

8,@ R,,_ (g : _. (2) ' .

which yields the TE and TM normal mode horizontal wavenumbers

of the layered earth. The contour of the Integration Is
(3 :*

2_
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i deformed into a steepest descent contour through a saddle{_ point for each term in the (geometrical series) expansion.

Each term in the geometrical series can be expressed in

an asymptotic series. The geometrical optics solution to

final order is obtained by retaining only the first term

in each asymptotic series. For the normal mode analysis,

the contour is deformed to yield a sum over the normal modes

of the system plus integrals along the branch lines.

Scale Model Description

For electromagnetic systems to be similar, the spatial

dimensions in free space wavelengths and the loss tangents

must be the same. In order to simulate the radio inter-

ferometry method in a reasonably sized laboratory, wavelengths

in the centimeter range are necessary; this corresponds to

radio frequencies in the GHz range. The 2-1ayer earth

model and associated electronics are shown in Figures 3 and 4.

The transmitting (TX) and receiving (RX) antennas are

tuned half-wavelength electric dipoles. The excitation

frequency is 5.9 GHz. which corresponds to a free space

wavelength W - 5.08 cm. The 2-1ayer earth Is simulated by

8 tank of ell with very low electrical loss(tan6<<l) with a

plane reflector suspended at a depth d in the oil. The

effects of the finite slze of the tank (30W long x 15W wide _

x lSW deep at 5.9 GHs) are minJJnised by lining the inside

with a m4crowave absorbing materials (Bccosorb). This

reduces undesired spurious reflections from the walls o_
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the tank. The TX and TX antennas are mounted on a track

_,_ suspended over the tank_ the RX antenna is mounted on a I

mechanized carriage so that profiles of field strength

versus TX-RE separation can be made automatically. The

track and associated supports are also covered with micro-

wave absorbing material.

Three sets of electrical properties of the 2-1ayer

models were used in the model. The first set was an oil

with dielectric constant K1 = 2.16 and tan 61 = 0.0022, and

an aluminum sheet, tan 62 .m, acting as a perfectly reflect-

ing substratum. A second set of electrical properties were

obtained by doping the ell with benzonitrile to increase its

loss tangent• The third consisted of ell (undoped} underlain

by a dielectric slab K 2 - 6.75 and tan 62 = 0•11. The slab

was made of epoxy doped with carbon to increase its loss

tangent. The slab was 2W thick and had a sufficiently high

loss that it eliminated the possibility of spurious reflections

from the bottom of the slab returning to the surface. The

thickness of the o11 layer was varied from 0.2W up to 10W

and profiles of lOgl0 IE$1 versus TX-RX separation along

the B profile are presented here•

The automatic traverse equipment and associated re-

cording apparatus are sketched in Figure 4 (Waller (1973)).

The field strength versur the distance is displayed on an

X-Y recorder and at the Dame time can be recorded on a

t_o-channel analog tape recorder The recorded data was• (

later digitised in order that data enhancement and automatic
0

interpretation schemes could be tested.

m .......... ,,,,,,,,,,, .... "_ _ . :._ .... L
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Theoretical and Expe,rimental Results _ +

£a) Half-Space Earth: Radiatiop Pautern uirectlonality I+ :

Before discussing the 2-1ayer earth in detall the !

Ihalf-space response is briefly reviewed. The interaction

of the dipole source with the air-earth Jrterface drast- I -

ically modifies the directionality of the antenna. This re- } -

esult is important when analysin_ 2-1ayer model_ with the _ /

geometrical optics solution. This effect has been discussed

I by Tsang et al (1973), A,nan (1%70, 1973), Cooper (1971). .The TE radiation from the horizontal electric dipole is

considered in the followlng analysis. Th'_ radiation pattern

for TE energy is the same as that for the electric fleld

component E_ Since E V varies as sin_ [n the X1 "X2 and

this variation is independent of the layered structure, the

variation of E¥ "inthe X2 -X3 plane at a fixed distance :

from the source yields the pertinent radiation pattern

information. E in the X2 -X3 (sin -I) plane for whole-

space is simply given by

jz-_ +:

" _ ------E_- w_. Z dL _ (3) _+
.4'r _W _,

+

while for the half space, as R +., •

'+'" o),,,, T,." +++:d+L (z, t4)4r _vJ

j:'I_'R

_'Ir_, W'

, i
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The modified pattern is highly directional with a stronq peak

I into the earth at the critical angle of the interface as
illustrated in Figure 5. The patterns show radiated power

versus direction in the X2 -X 3 plane. The whole-space

pattern is used to noremlize the patterns for varying

dielectric constants of the half-space. Similar analyses

can be carried out for other field components! all show

highly 6ireotlonal patterns.

Ixparismntal _easurononts of the radiation pattern

obt_£nod with the scale m)del with no subsurface reflector

conf:L_a the directionality of the source in the prosenc_ of

an interface. The radLatio,, patterns were moasure_ by i

boon which moved the antenna in a circle of oonstant radius

{_ about the tran_dtted antenna. The amplitude of the received i

!
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i signal and the angular position of the boom were fed to an
_,_ X-Y recorder which produced directly plots of field intensity

versus position in the X2 -X 3 plane. The results of

measurements of IE_I are shown in Figure 6. The pattern for

E_ was measured on circles with radii of 3 W, 4.5 W, and 6 W.

The "theoretical" pattern for the air-oil-dipole configuration

computed by Cooper (1971) is shown with the experimental

results. It should be noted that the experimental results

are not normalized and that the shape of the patterns, not

r the magnitudes, should be considered.

The discrepancy between the theoretical response and

observed response are primarily explained by the fact that

the experimental measurements were made at a finite distance

from the source. The theoretical pattern shown is valid

only infinitely far from the source be definition. As the

TX-RX separation is increased, the experimental pattern

changes shape and becomes more lik_ the theoretical]"

predicted pattern.

The preceding solution for the theoretical response

is obtained from the first term in an asymptotic expansion

for the field. At finite source-receiver distances, higher

order terms in the expansion become important. At the peak

of the pattern, however, alternate solutions must be used

since the higher terms of the asymptotic expansion are

infinite. Brekhovskikh (1960) has studied the fields in

the region of the peak of the pattern in detall and obtainod

_ a modified expansion with the first correction term decreasing !
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as (l/r) 5/4 A rough calculation shows that this term is

-,r significant out to distances of tens of wavelengths.

The physical rationale for the lobate is
pattern quite

simple. The explanation can be seen most easily if the
waves

radiated by the antenna are examined from the ray theory

point of view. In a whole space the source radiates the

waves uniformly in all directions in the X 2 -X 3 plane. The ,

presence of the half-space modifies this, since rays which ",

propagate horizontally are conti,ually refracted downward at

I the critical angle of the interface. Combining the whole-space

pattern of the antenna with the directional selectivity of

the interface yields a complex radiation pattern with high

directionality.

To first order, the fields along the interface are zero.

If higher terms of the asymptotic expansions are retained,

the fields fall off as (I/r) 2. There are two components in

this second order effect; one which propagates with the phase

velocity of the earth and one which travels with the phase

velocity of the air. As a result the fields at the surface

of the half-space exhibit _ regular beating as a function

of spatial distance from the antenna. This is discussed by

Annan (1970, 1973).

(b) 2-Layer Earth: Perfectly Reflecting Substratum

The 2-1ayer earth can exhibit a wide variety of

responses depending upon the range of electrical properties

_ and layer thickness. In early analysis, the case of a

1975008236-444



!
l

- 13 -

_ perfectly reflecting substratum was considered as a starting

_ point. In order to demonstrate the general character of

the 2-1ayer earth, a suite of responses for various values of

_ d and a perfectly reflecting substratum obtained with the

scale model and computed theoretically using both the normal

[ mode and geometrical optics solution are shown in Figure 7.

The layer thickness ranges from 0.5 W to 7 W. The E_ field

strengths in decibels are plotted versus transmitter receiver

separation in free-space wavelengths along the B profile.

The scale model response is shown along with the mode and

geometrical optics solution. The geometrical optics curve

is shifted upward from the experimental curve while the mode

solution is shifted downward. This offset of the curves is

used to minimize the overlap of the various responses which

tends to confuse the visual presentation of the data.

The results in Figure 7 span most of the important

depth ranges and demonstrate most of the features of the

2-1ayer response. For the shallow depths of 0.5 W, 1.0 W,

i and 1.5 W, the fields are expressible in terms of one, two,or three guided modes (see Appendix) plus the lateral and

inhomogeneous waves given by branch-line contilbutions. The

fields decay with distance as (l/r) ½ and exhibit a regular

beating as the modes move in and out of phase. For d = 0.5 W,

only one mode is guided and the only interference occurs

near the source where the branch line and modal contributions

are comparable in magnitude. The remainder oE the infinite

_q sequences of modes are either not excited or are leaky modes

"'" which decay exponentially with distance from the transmitter.

.J .-
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i As the thickness increases and modes into

layer more more move

_,_ the guided regime and the field strength versus distance

becomes more complicated as the various modes move in and out

of phase.

Examination of the theoretical responses show that the

geometrical optics solution and the model response are in

good agreement for layer thicknesses greater than 3.0 W.

For shallower depths, the experimental and theoretical

responses diverge from one another. The breakdown in the

geometrical optics solution is to be expected from its

asymptotic nature. The normal mode solution, however,

shows excellent agreement at the shallow depths and becomes

the same as the geometrical optics solution at the larger

depths.

(c) Thin La_ers and Critical Depths

The preceding discussion of the 2-layer earth with a

perfectly reflecting substratum illustrates the general

nature of the response. At very shallow depths and at

various critical depths, the response changes quite

drastically with layer thickness. The Fuite of curves for

depths d - o.13 W to 0.88 W given in Figure 8 show this

behavious clearly. The critical depths (dc) in wavelengths

for the model electrical properties are given by dc - 0.23

(2N + I) TE modes) and d c - 0.46n (TM modes), n - 0, I, 2...

(see Appendix). For d < o.23, (E_ is composed of TE modes

(_ only on B profile), no normal modes are excited since the
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layer is too thin. As a result, the variation of the fields

_ with distance is dependent on the branch-line integrals

which describe the secondary waves associated with the !

interfaces and which fall off as (i/r) 2. As d increases past i

0.23 W the first normal mode moves into the guided regime and

the field strength falls off with distance as (I/r) %. The i

plot of field strength versus distance varies only slightly i

with depth changes for 0.23<d <0.69.

As d �0.69,the field strength versus distance plot

begins to show a weak beating. For d just greater than 0.69,

the fields show very deep interference nulls at regular

spacing. Two guided modes (TE) are now propagating in the

layer for 0.69 < d < 0.88, the profiles exhibit regular

beating; however, the maxima and minima locations are very

sensitive to the layer thickness. Although not presented

here, data collected as d�1.16 shows the same behaviour

as d _ 0.69. At d = 1.16, a third mode moves from the

leaky to guided regime (see Appendix).

The theoretical responses computed by the normal mode

method are shown along with experimental results. The mode

solutions match the experiment results very well except at

the critical depths. At the critical depths, two poles and

a branch point merge together in the mathematical solution.

The branch line contribution is evaluated approximately by

steepest descent integrations the approximate solution

fails at the critical depths. The results of evaluating

_ the branch line contribution by numerical integration are

also shown on the profile for d - 0.69. The agreement
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between experiment and theory is much better at the critical

i _ depths with this improvement. (It should be noted that the

i depth of experimental signal nulls may not match those of

the theoretical nulls due to the present of spurious

background signals and the low level characteristics of

the log amplifier.)

(d) 2-Layer Earth: Dielectric Substratum

The response of a dielectric substratum is not greatly

different from the previous responses for a perfectly

reflecting substratum. The major difference is that there

are no longer any unattenuated guided modes; all the modes

are leaky since energy can always leak out of the layer

into the substratum. As a result, the field shows the same

basic behaviour but all responses have a strong attenuation

with distance from the TX.

The data collected with the scale model experiment are

shown in Figure 9. The experimental results are presented

along with the theoretically (normal mode) computed responses.

The results compare extremely well. The normal modes no

longer have a sharp onset as they do for a perfectly

reflecting substratum. The modes now move from a very

leaky regime to a much less leaky regime with no sharp

dividing llne present. The accuracy of the theoretical

solution is better than for the perfectly reflecting

mubstratumcase since there are no true critical depths and

(_) the mathematical approximations in evaluating branch-line

contributions are greatly improved.
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i Summary and Conclusions

_ _he results of theoretical and experimental work have

i ed to a clear understanding of the physical mechanisms of

! wave propagation in a 2-1ayer dielectric earth. This

detailed understanding of the waves propagations in such a

system is necessary for the interpretation of radio inter-

ferometry data from geologic environments which can be sim-

_ ulated by a 2-1ayer model.

The practical aspects and limitations of constructing

scale model experiments at QHz. frequencies are well

understood and the reliability of the model makes it an

ideal method of examining problems which are not tractable

from a theoretical point of view. With such excellent

agreement between theory and experiments, the model can be

applied to the analysis more complex problems with confidence.

The scale model has proved to be invaluable in checking

out the computer programmes which generate the theoretical

responses. The mathematical formalism is very complex and

_ its translation into a computational formalt is difficult;

i particularly when approximations are made in certain parts

of the analysis.

The normal mode approach to analysing moderately to

very thin layers has greatly improved the ability to interpret

layered structures. The initial analysis of responses was

made using the geometriaal optics solutions which is invalid

for thin layers. The model study confirming the mode analysis

_i _ has already led to successful interpretation of radio

i interferometry data obtained in thin layer environments I

• _I =
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Rossiter et al. (see accompanying paper).
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i _ Appendix

|
TE and TM Mode Critical Depths for a 2-La_er Earth

The radial wave numbers of the normal modes of a plane

stratified 2-1ayer earth are obtained by solving the

transcendental equations (Annan (1973))

_. M.ac I _[$ ""- R,. "° (.-z)

When A-I or A-2 are satisfied, the TE or TM reflection

coefficient for the 2-1ayer structure (see Table I) is

singular having a resonance (simple pole) at that particular

value of horizontal wavenumber denoted by A_ E or k_ M. The

wave nature of the problem is sketched in Figure A (a).

A plane or cylindrical wave propagating with horizontal

wavenumber bounces back and forth between the two interfaces.

In one transit back and forth across the layer the wave
0

suffers an amplitude and phase change given by RI0 RI2

due to reflection at the interfaces plus an amplitude and

phase change of _% while propagating across the layer in one

direction. Equations A-I and A-2 Just express the

requirement that the wave temples one transit of the layer

with no change An amplitude and • phase change of N21,

TM
n - 0,1,2.... In general the A_E and Ap are complex and

A-I and A-2 have no purely real solutions. Only totally

"" real _ yield modes which are unattenuated radially.
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True guided modes exist only when IRI0 I = IRI2 I = 1 which

physically occurs only when the media are loss free and region

_" 1 is a low velocity region (l.e. K1 > K0 and K2) or the

lower interface is a perfect reflection (i.e. tan6_ _). In

addition d must exceed a minimum critical thickness. Analysis

of equations A-1 and A-2 in the complex I plane show that the
_M

I_TE must lie along a line which intertwines the various

Riemann surfaces defined by the branch lines of the
* 2)1/2

i (Ki - I functions. The case of a perfectly dielectric

{ slab (tan 62 - _) substratum is sketched in Figure A(b).

The roots of the transcendental equation lie on the line

indicated in A(b). The solid circles denote roots on the

upper Riemann surface which are excited modes and the open

circles indicate roots on the lower Riemann surfaces.

The poles on the real axis between K_o an d _K 1 are guided

unattenuated modes while the poles Ap < _K_are leaky modes

and have a positive imaginary component. The branch-lines

are chosen as indicated in Figure A(b) and run from_

to_ �j®.The upper Riemann surface for the radical

(K_ - 12) % where K is real is defined as the one where

12) % 12) % j6
(K! - - 6 for A <_K_and (KI -

where 6 is

a real positive number and A is on the real axis. On the

lower Riemann surface 6 must be replaced by -6 in the

preceding expressions. For complex K the Riemann surface

definitions consistent with the real K definitions are

obtained by examining the case of Im K! * O.

The behaviour of the A_TR with variations in d is
+

r

y ,_ twofold_ the poles _ move down the contours and are
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i :_ more closely packed as d increases and the contour, on which
the poles I_, swings towards the imaginary axis. As the

depth varies, a pair of the poles coincide with the J K_' brancho

point at regular depth spacings. These depths are the

critical depths for the modes and mark the depth where a mode

moves from the leaky to the unattenuated or guided regime.

The crltical depths for the case of the perfectly

reflecting substratum are obtained by noting that

and that for A -_K o,

7L

Substituting into A-i and 2 yields.

d

_.0(;-0 .at

For finite loss tangents, and a dielectric bottom, the

contours on wh$ch lp lies still pass through JKI- but are

,,.,....1 , ... J.;..dICdisplaced away

so that all modes have a finite imaginary component which

corresponds to attenuation with distance.
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Figure Captions

_ Fig. 1 Sketch of a 2-layer earth geometry and t;_e

associated cartesian and cylindrical coordinate

system.

i Fig. 2 Complex radial wavenumber plane illustrating

integration contours and location of singular polrts:

i branch points #

TE poles upper Riemann surface
lower Riemann surface

° (:TM poles upper Riemann surface

i lower Riemann surface

...... Hankel tra_£orm contour

i ...... Geometrlcal optics path through saddle

i point

i Normal mode contour
ii

.... Branch cuts

i Fig. 3 Schematic drawing of scale model 2-iayer earth.

I Fig. 4 Schematic diagram of scale model electronics,

! display end recording system.
!

Fig. $ TE (E) radiation patterns for the horlzontal

electric dipole on the surface of a dielectric

half-space for Kl " 1. (whole-space pattern),

2., 3.2., 10.

Fig. 6 Scale model experimental measurements of (E 4)

pattern in X2-X 3 plane compared with the theoretical

pattern computed by Cooper (1971).
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Fig. 7 Suite of 2-1ayer earth responses where the

_ substratum is a perfect reflector; scale

-_)
" model response, ..... normal mode theoretical

geometrical optics theoreticalresponse, .......

' response.

} Fig. 8 Suite of 2-1ayer earth recponses for a perfectly

_ reflecting substratum ard shallow reflector depths:
9

-- scale model response; normal mode

theoretical response; _ _ _ normal mode withg

numerical integration of branch-line contributions.

_ FAg. 9 Suite of 2-1ayer earth responses for a dielectric

substratum:-- scale model response; ..... normal

i mode theoretical response

Fig. A (a) Sketch of multiple reflections in thin layer.

(b) Illustration of pole positions in complex _

plane as a function of d.

.--.--.--.Contour on which IRI0 RI2 8J = 1

_ Branch-point

O ROOTS (Ap) on the upper Riemann surface :

O Roots (Ap) on the lower Riemann surface

m
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i Table of Contents
Table 1: Cylindrical components of the E and g fields

about a Horizontal Electric Dipole (HED) on the

surface of a 2-layer earth. The fields are

expressed in terms of (electric and magnetic)

Hertz (vector) potentials (_e and _m ) which

have only a vertical (_3) component.
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[ Recent theoretical work on the radio Inte_ferometry

I technique _or dielectric layers of less than one free

i space wavelength thick, has indicated that there is a
} thickness for which no interference is observed. This

thickness is about 0.2 free space wavelengths for ice,

and it lles between the thickness that allows one single

mode to propagate in the layer 1> 0.2 wavelengths) and a

thickness that is essentially transparent to the wavelength

being used 1_ 0.2 wavelengths).

Field work was done on the Juneau Icefield using

frequenct_ _ron 1 to 32 NHz. At 1 _nd 2 NHz, an

interf_,;¢ pattern typical of a half space of ice with

a dielectric constant of 3.3 was observed, while at

4 NHz essentially no interference was seen. At higher

frequencies, the interference observed is typical of that

of • layer overlying a half space. The upper layer can

be interpreted to have a depth of 15 or 20 m (0.2 wavelengths

at 4 Nlls) with a dielectric constant of 2.4. This is the

result of a layer of snow over a half space of ice. The

technique is therefore of potential interest in interpreting
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1" INTRODUCTION

Radio frequency interferometry depth sounding was

originally developed to measure the dielectric properties and

structure of highly resistive geological regions (Annan, 1970,

1973). It has been used successfully for sounding glaciers

(Rossiter et al., 1973; Strangway e__ta__l., 19741, and on the

moon (Simmons et al., 1972, 1974). The technique consists

of setting a radio transmitter on the surface to be sounded,

and measuring the field strength as a funcion of distance

from the transmitter. Several waves propagate from the

transmitter to the receiver, generating an interference

pattern that is indicative of both the dielectric properties

and the structure of the medium.

The retical studies have determined the fields to be

i expected over dielectric layers (Annan, 1973; Kong, 1972;

4
Tsang et al., 1973). Early work used geometrical optics

ii approximations in order to evaluate the integral expressions,

il but it can be shown that the method is highly inaccurate for

il layers less than about three free space wavelengths

(abbreviated "W" throughout) thick, In more recent work, a
!_ normal mode approximation has been used that is particularly
P

i! suitable for calculating the fields in th- presence of a thin

_I layer.

l
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_: "] In a companion paper (Annan et al., 1974), theoretical

and experimental data from an analogue scale model are

• _ compared. In the present paper, we will examine the !i

particular case of a thin dielectric layer (0 to 1W thick)

overlying a thick dielectric layer (see Figure I), using mode

theory, and compare these results with field data collected

on the Juneau Icefields, Alaska.

THEORY OF THIN LAYERS

i Radio interferometry data show three distinct types of

! behaviour as the upper layer increases from being very thin

and transparent, through a critical thickness, to being thick

• _ enough to allow propagating modes. We will examine each of :

these three cases.

! (a__)._Vezythin transparent upper layer

When the upper layer is very thin (less than about

0.2 W thick in ice), it is essentially transparent. Therefore,

the observed interference pattern is independent of the

properties of the upper layer, and looks like that of a half

space with the properties of the lower layer (see Figuzes 2

and 3),

(hi Transitio. thickness - decoupled la_er

As the upper layer becomes approximately 0.2 W thick

I|
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" ii (the exact value is dependent on the dielectric constant),

it effectively decouples any signal from the lower layer.

However, if _t is still too thin to allow free propagation

within itself, the observed patterns will show no interference

at all (see Figure 4). Since this transition band is narrow

(and may be non-existent for very low losses), it _s extremely

diagnostic of upper layer thickness.

(c} Modal propagation in the upper lazer

As the upper layer becomes thick enough to support freely

propagating modes, the interference patterns again show

clear beating (see Figures 5 and 6). Since the interference is

generated by modes propagating along the thin layer guide, the

spatial frequency of the beats is rel_tively low, and dependent

on the properties of the upper layer (although occasionally a

higher spatial frequency ripple, due to the lower layer, can

be seen}.
?

DIELECTRIC PROPERTIES OF ICE AND SNOW

The dielectric properties of ice and snow have been

reviewed by Evans (1965). Ice has a strong relaxation at abQut

104 H z at 0°C, but for frequencies well above this, the

dielectric constant is 3.2, and is fairly independent of
f

temperature. Since radio frequencies are on the high
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frequency tail of the relaxation spectrum, the product I_

I_ f.tan 6 is approximately constant. It has a value of about

0.2 MHz at 0°C, decreasing to 0.i MHz at -10°C.

Snow is essentially a mixture of two dielectrics - ice |;

and air. As such, it has dielectric properties that are

between those of its constituents, and which depend primarily
/

cm3hason its density. Thus snow of density 0 5 g/ a

dielectric constant of about 1.9 and a loss tangent about

half that of ice.

! The effect of imgurities is not well understood, although

impurites tend to increase the loss tangent. The addition of

a few percent water by volume to snow would increase the

dielectric constant to perhaps 2.5 and increase the loss

tangent perhaps several times• Few accurate studies have

been done on this problem.

JUNEAU ICEFIELD DATA

i During the summer of 1972, measurements were made at

_ various locations on the Juneau Icefields (see Figure 7) . We

} will examine two runs - Run 36 made from Site 6 on the Taku

I Glacier, and Run 92 made from Site 25, in the accumulation
t

_ zone of the Matthes Glacier. At Site 6, the thickness of icei t:
_ ,

" L

1975008236-474



-- 5 --

I
has been determined seismically to be approximately 350 m.

(Miller, 1952). The thickness of the ice at Site 25 is

uncertain, but it is probably about 200 m.

Measurements were made at six frequencies - I, 2, 4, 8,

16, and 32 MHz, so that the free space wavelength varied from

300 m to about I0 m. Six components of the magnetic field

were measured - three from each of two transmitting antenna

orientations. Of these components, we presently have

theoretical solutions for two of them - the vertical (Hz)

a_._ radial (Hp) magnetic fields from a broadside transmitting

antenna. These two components were compared to suites of

theoretical curves and a best fit that gave consistent results

for all frequencies was found.

For both runs, the data at 32 MHz were so scattered that

interpretation in terms of layered structures was not possible.

Some scattering is pre_nt at 16 and 8 MHz. This seems typical

of temperate glaciers (Strangway et al., 1974_ Davis, 1973).

We attribute this scattering to random reflections from

crevasses and other irregularitles in the ice with typical

sizes of about i0 m.
g

The parameters deduced from each frequency for the two runs
b

are listed in Table I. Theoretical curves for the best single

set of parameters for each run are shown with the field data i

0
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_ _ Figures 8 and 9 (i.e. one set of parameters was chosen

for each run, although for any given frequency better fits

_ might have been found with slightly different parameters).

In each case, the two components (Hp and Hz) gave similar

results. From the 1 and 2 MHz data, the dielectric constant

: al,d loss tangent of the lower layer can be estimated. From the

4 MHz curves, very tight limits can be put on the thickness of

the upper layer. From 8 MHz and to some extent 16 MHz data,

the properties of the upper layer can be determined.

Runs 36 and 92 differ in two basic respects. For Run 36,

the loss tangents are typical for ice- 0.2 ± 0.1/f, where f

is frequency in Mltz (Evans, 1965). The values obtained for the

thickness of upper layer are consistent from frequency to

frequency. For Run 92, it was not possible to obtain a

consistent thickness without letting the loss tangent drop

to at least 0.1/f. Even then, the depths obtained at the

lower frequencies (especially 4 MHz) were less than 15 m while

for 8 and 16 MHz a depth of about 20 m was required.

DISCUSSION

We interpret the thin upper layer at both sites as being

snow about 15 to 20 m thick, with a dielectric constant of 2.4

± 0.2, overlying thick glacial ice, with a dielectric constant

_ 5
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of 3.3 ± 0.I. The loss tangent at Site 6 (Run 36) is about

0.2 ± 0.l/f, while at Site 25 (Run 92), it is somewhat lower.

These dielectric properties are typical for glacial ice and

for snow of density 0.65 ± 0.15 (Evans, 1965). We attribute

the lower loss tangent at Site 25 to the lower mean temperature

a the higher site which reduces both the relaxation frequency

and the amount of free water present. It is interesting that

although the measurements were made in summer with runoff water

abundant on the surface, these losses are not particularly

high. Presumably, any free water is in too thin a layer or is

too well disseminated to be noticeable at the frequencies used.

Inconsistency of the depth determinations from frequency

to frequency (especially true at Site 25) is possibly due to

the gradation of the snow-ice boundary. Examination of a

crater pit. some 5 m deep blasted on the Taku Glacier (see

Figure 7(a)) confirmed the gradational nature of snow density

(and hence dielectric constant) with depth. Since Site 25 is

in the accumulation zone of the glacier, snow may be compacting

even more gradually in that area.

CONCLUSION

Using radlo-frequency interferometry, a thin leyer can be

detected and estimates of the thickness of the layer to within

a few meters can be made. By using a range of frequencies, the

dielectric parameters of both the upper and the lower layer can

be obtained.
Q

R
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FIGURE CAPTIONS

Fig. 1 Configuration of a thin dielectric layer overlying an

infinite dielectric half space. By varying the frequency,

the thickness of the upper layer in wavelengths can be

changed.

Fgg. 2 Theoretical curves of field strength (db) vs. range in

wavelengths (A) for a very thin upper layer, with the

dielectric constant of the lower layer varying. The

spatial frequency of the pattern increases with

increasing k 2. (a) H_ broadside component, (b) Hz

broadside componert.

Fig. 3 Theoretical curves for a very thin upper layer with the

loss tangent of the lower layer varying. The sharpness of

the interference drops off with increasing tan 62 . (a)

H2 broadside component, (b) H z broadside component.

Fig. 4 Theoretical curves for the region of no interference

showing the transition from a transparent upper layer to

an upper layer that propagates freely. (_> _[f broadside

component, (b) H z broadside component.

Fig. 5 Theoretical curves for a propagating uppez " _v" with

the dielectric constant of the upper layer va_ylng.

(a} _, broadside component, (b} Hz broad_tde component.

Fig. 6 Theoretical curves for a propagating upper layer, with

the loss tangent of the upper layer varying. (a) H2

I
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I. broadside component, (b) H z broadside component.

Fig• 7 Maps of the Juneau _cefield (a) near Camp i0 and (b)

near Camp 18. There is a gap of 2 km between the top

of (a) and the bottom of (b). Radio interferometry was

conducted at "R.F.I Sites". Sei_mlc depths (from

Miller, 1952) are indicated where known. Run 36 was

made at Site 6 at an elevation of 1050 m. ASL on the

Tak_ Glacier; Run 92, was made at Site 25 at an

elevation of 1770 m. ASL, on the Matthes Glacier.

The crater site is also shown in (a).

Fig. 8 Radio interferometry data, H_ and H z broadside components,

1 to 16 MHz for Run 36, Site 6 (solid lines)• At 16 MHz

scattering is significant (see text). Theoretical curves

are also shown (dashed llnes) for the following parametersz

dI = 19 m., kI = 2.4, tan 61 = 0.2/f, k 2 s 3.3 and

tan 62 - 0.2/f•

Fig. 9 Radio interferometry data, H_ and H z broadside cumponents,

i to 16 MHz, for Run 92, Site 25 (solid lines}. At

16 MHz scattering is significant (see text). Theoretical

curves are also shown (dashed lines) for the following

parametersz dI s 18 m., k I m 2.4, tan 61 - 0.2/f,

k 2 ""- 3 3 and tan 62 - 0._
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Introduction

The Surface Electrlcal Properties (SEP) Experiment

was flown to the Taurus-Li_trow region of the moon on

Apollo 17. The experiment used megahertz radio frequencies

in order to determine (i) electrical layering at the land-

Ing site, (ll} the dielectric properties of the surface

material in sltu, and (lii) the presence of scattering

bodies.

In order to sound into the surface layers a relatively

new technique, called radio interferometry, was employed.

A transmitter was set out on the Im_ar surface and a

receiver was carried on the Lunar Roving Vehicle. As the

Rover moved along its traverse, the received magnetic field

strength and the Rover's position with respect to the

transmitter were recorded.

At any point on the traverse several waves reach the

receiver, and these waves interfere, as shown in Figure 1.

A plot of field strength as a function of transmitter-

receiver separation therefore gives an interference pattern

that is diagnostic both of the physical properties and of i

the structure of the upper layers. Field strength data

for six frequencies and six combinations of receiving and

trans_ttlng antenna orientation, along with position, J

0 calibration, and temperature information, were recorded on

J

/

i :
i :
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a magnetic tape 'ahich was returned to earth.

The basis for the interferometry concept and details

of the SEP Experiment have been given _lsewhere (_mnan0

1973; Rossiter et al. e 1973; Simmons et al., 1972; The SEP

Team, 1974). In the present paper we will outline briefly

the basis for our interpretation, present the lunar SEP

data, and describe our most recert evaluation of the

results. [:

Background Material

Because radio interferometry is a relatively new

technique, most of our background experience with it was

built up explicitly for the lunar experiment. This study

had three main facets: 1£1 theoretical evaluation of the

EM fields surrounding a dipole over a dielectric; (ii)

experimental work using an analogue scale model; and,

(ili) field trips to different glacier sites for full scale

experiments in a real environment.

Although the integral expressions for the EM fields :2_

surrounding a dipole over a layerec earth have been known

for sou_ time (e.g. BaKes, 196G), their evaluation for

low-loss layer_ is far fr_ trivial. Straight numerical

integration is prohibitively expensive. Therefore two _

complementary approximate methods were used - a geometric ,
i'
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optics approach and the theory of normal modes (Annan,

1970, 1973; Kong, 1972; Tsang et a l., 1973). The former

is most accurate for thick layers, and becomes invalid

for distances less than about a wavelength. The _atter is

most easily calculated for thin layers in which only a

few m,des propagate.

In order to check these calculations, and to be able

to _tudy cases too complex for theoretical treatment, a

scale model was constructed using microwave frequencies

(Waller, 1973t Annan et al., 1974). The model used a layer

of dielectric ell in which a reflecting plate could be set

up in many different orientations. A typical suite of

model curves for the layered case of a dielectric over a

perfect reflector is shown in Figure 2, along with the

corresponding theoretical curves. The inaccuracy of the

geometric ootlcs solution for thin layers is readily

apparent•

Field experience with the Interferometry technique

ii was gained on trips to the Gorner and Athabasca Glaciers• .wg, UDi O(Rosslter et al , 1973; Strangwsy et al , 19741, and to

the Juneau Icefields (Rossiter e__tal.,19741, using proto-

type lunar hardware at various stages of development.

Sinaemost of the glacial sites were known, f2:om Independent !

work, to be close to a plane layered situ_,,n, we were
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faced with the problem of finding the set (or sets) of para- I

meters that best characterized the data collected. This was

done by trial-and-error comparison of suites of theoretical :

curves with field data (although attempts at formal inversion i

are currently underway by Watts (1974)).

A typical set of field profiles and their corresponding

"best-fiu" theoretical curves is shown in Figure 3. Although !

no single frequency or component was uniquely indicative of i

the parameters (dielectric constant, loss tangent, and depth

to reflector), by accepting only parameter sets that gave

consistent, good fits for all frequencies, and for both of

the maximum-coupled components for which we have theoretical

' solutions, an acceptable interpretation was always found.

5EP Operational History

The SEP experiment was carried out at the Taurus-Littrow

landing site during EVA-II and III. The transmitting dipole

antennas were deployed by the astronaut about 150 meters

east of the Lunar Module in a north-south and in an east-

west direction (see Figure 4). During EVA-II SEP data

was recorded as the Rover moved in a westerly direction away

from the qEP transmitter out to station #2. The traverse

as reconstructed from the SEP-LRV navigation data is given

in Figure 5.

O

i ,
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From the SEP transmitter out to a range of 1.7 km the

receiver operated normally. Between the range of 1.7 km

and 4.3 km the receiver operated in an acquisition mode_

attempting to acquire a synchronization signal from the

transmitter. In this mode only partial data is collected.

At a range of 4.3 k_ because of the low recezved field

strength, the receiver obtained a false resynchronizing

pulse, causing an incorrect realignment of the receiver

and transmitter timing, and a subsequent loss of field

_ strength data from that point. At station #2 the receiver

was turned off to aid in cooling. The receiver was operat-

ing again between stations #4 and #5; however, the signal

levels were too low to allow a resynchronization with the

i transmitter. At the beginning of the station #5 stop the

receiver was turned off, and, although the receiver was turned

on again at the end of the station stop, because the internal

receiver temperature was above a safe limit a thermal switch

prevented it from operating for the remainder of EVA-II.

D_ta was to have been recorded during EVA-III from

the SEP transmitter to station #6 but the astronauts failed

to turn on the receiver. Therefore, the data which are

used as a basis for this _iscussion are those taken from

the SEP transmitter west to a range of 4.3 km.
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SEP Data and Discussion
i

The configuration of the SEP transmitting and receiving

antennas is shown in Figure 6. The six frequencies, 1, 2,

4, 8, 16 and 32 MHz, are transmitted sequentlally by two

orthogonal horizontal dipole a_tennas and received by three

orthogonal loop antennas, resultlng in 36 readings of the

fleld strength during each measurement cycle.

Posltlonal information from the Rover navigation system

i8 recorded as increments and decrements of I ° in bearing,

and 100 m in rang_and as odometer pulses, each equlvalent

to a .49 meter change in position for the rlght-front and

left-rear wheels of the Rover.

The Rover traverse derived from SEP data has been

compared in Table 1 with traverse data produced by the

U.S.G.S. {ALGIT, 1974) and with the traverse ru _onstruction

created from the Goddard Very Long Baseline Interferometry

Data (I. Salzberg, personal communication, January 1974).

The VLBI data has absolute accuracy of approximately 40 m.

The U.S.G.S. traverse 18 taken from photographic pans made

at station stops, and are accurate to approximately i0 m

for EP-4, LRV-I, and station 2, and to about 50 m for

LRV-2 and 3.

The three traverses are plotted in Figure ?. The

0
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maximum differences are about 500 m at stops LRV-2 and 3.

The differences between USGS and VLBI traverses are larger

than expected, and later data might be in better agreement.

For the first 2 km, all three reconstructions are in good

agreement.

TABLE i. COMPARISON OF EVA-II TRAVERSE STOPS FROM USGS,
VLBI AND SEP-LRV NAVIGATION DATA (See Figure 7}.

STATION RANGE (Km} BEARING
SEP-LRV SEP-LRV

VLBI USGS NAV DATA VLBI USGS NAV DATA

EP-4 .500 .538 .508 80.4 80 83

LRV-I 2.603 2.603 2.645 80.9 78 82

LRV-2 3.750 3.729 3.811 81.4 86 83

LRV-3 4.248 4.253 4.325 80.2 87 82

HOLE IN
THE WALL 5.638 5.683 79.5 81 _ _

STN. #2 7.46 7.6 68 71

i i| ...... iii • i

A set of SEP field strength data is shown in Figure 8.

Each p_ot contains either the endfire or the b_oadslde

components for one frequency, plotted as a function of range,

in free-space wavelengths. The data are plotted to either

1.7 km or to 20 wavelengths.

0
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For each frequency, six components are measured. Three
H_

components -4endfire, and H_ and H z broadside are maximum-

coupled for a plane layered geometry, while the other three i

are minimum-coupled to the transmitted signal. For all six

frequencies the maximum-coupled components have an average

level from 5 to 15 dB greater than the minimum-coupled

components. These results are in direct contrast to our

glacial studies. In all our glacier runs the max and min

components were approximately equal in level at 16 and 32

MHz (Strangway, et al., 1974). We attributed this to random
d

scatterers (e.g. crevasses) in the ice of the order of a

wavelength in size. We therefore conclude that there are

few scattering bodies near the lunar SEP site with typical

sizes of from 10 to 300 m. Scattering experiments both in

the scale model and on glaciers support this conclusion.

Further confirmation is obtained, by an examination

of the H_-endfire component. This component has a near-

surface wave so large that it effectively masks any inter-

ferenco. However, if near-surface scattering is important,

thls component becomes erratic. As can be seen from Figure 8, i

this component is relatively smooth at all SEP frequencies.

The residual peaks and nulls correlate well with those in

the _-broadside component. Therefore we feel that these i_
_t

two components are slightly mixed because the traverse was

(_ not completely east-we|t (i.e. not directly off the end of

th •• endfire antennal. _i

o;
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The other two maximum-coupled components (H_ and H z

broadside) have been the most important for interpretation _

(see Figure 9). At 16 and 32 MHz the number of peaks and

trc'ighs per free space wavelength of range is fairly low, _

indicating a dielectric constant of about 2 to 5. However,
\

the lower frequencies show somewhat higher beating rates,

indicating a dielectric constant of about 6 to 8, and !

certainly less than 9 or i0. These observations imply that

the dielectric constant of the near-surface material is
!

lower than that of deeper material. These results are
*

consistent with the dielectric properties of a soil layer

over solid rock, as measured on returned samples (e.g.

Olhoeft et al., 1973).

The loss tangent is estimated from the sharpness of

the peaks and nulls in the two major components. This

analysis indicates that the average loss tangent of the

surface layers to a depth of several hundred meters is less

than about 0.05. The fact that the higher frequencies have i

Itrong signal levels for many tens of wavelengths from the !

transmitter, while the lower frequencies die out relatively

quickly, indicates that the near surface material may have

losses in the order of 0.01 or less. These low loss values

confirm that there is no moisture in any form in the upper

layers of the moon. _i
2

i

a:
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Structure is more difficult to determine unambiguously.

By comparing the two major components to suites of theore-

tical curves for a plane two-layer geometry (i.e. dielectric

layer over a dielectric half-space), no single set of para-

meters has been found that gives theoretical curves in good

agreement with the data at all frequencies. Several per-

turbations from the two-layer model have therefore been

suggested.

One posslble variation is sketched in Figure 10(a),

showing a thinning layer of soil over rock. The inferred

parameters are a layer 20 m thick near the SEP site, with

dielectric constant of about 3 or 4, thinning to 15 m thick

a few hundred meters to the west. The lower material would

have a dielectric constant of about 6 or 7. Results from

the Lunar Seismic Profillng Experiment, conducted over the

same region, show good agreement with this model (Watklns

and Kovach, 1973). The basis for this interpretation is

the curve for 2 MHz broadside (Figure 9(b)), which shows

llttle interference out to about 4 wavelengths range, but

then has several dramatic peaks. This behaviour suggests

that the layer is Just thick enough near the transmitter

that little energy is transmitted either through the layer

or through the subsurface. However, further from the trans-

mitter the layer becomes sO thin that it is essentially

O transparent. Although we have no rigorous proof that this
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_" happens for sloplng interfaces, we have seen similar

behaviour for plane layers of different thicknesses.

Table 2 lists the parameters of a three-layer model,

sketched in Figure 10(b}. This model assumes, (i) that

layer I is so thin that it is essentially transparent to

all frequencies but 16 and 32 MHz; and, (li) that the

boundary between layers 2 and 3 is too deep to have much

effect on 16 and 32 MHz. Theoretical curves for this model

are shown for comparison to the data in Figure 9. Although

the ma_or features of the data are also in the theoretical

curves, the details are not always in good agreement. This

may be due to slight adjustments in loss tangent (the i

particular features in most curves are very dependent on

the loss tangent), or due to slight dipping of the inter-

faces (as mentioned above). However, this model has provided

the best fit to all the data.

........ ill i e i el iiilel

TABLE 2. PARAMETERS FOR BEST-FIT 3-LAYER MODEL

(See Figures 9 and 10(b)). _
i

Depth (m) Dielectric constant Loss t.angent _i

Layer 1 ? + 1 3.8 + 0.2 0.000 + 0.004

Layer 2 100 + 10 7.5 + 0.5 0.035 + 0.025 :

O Layer 3 O0 9 ? ?

el J llle i i llll i , I i i il i t I i iiii _
i mill ii L I m ,11,II F I I I I II

,_.

2
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A third model which has been suggested (SEP Team, 1974)

is that the dlelectrlc constant increases gradationally

with depth. This model is not at all supported by the

LSPE seismic data (Watklns and Kovach, 1973); however, this

type of phenomenon may be important, especially near the

surface.

i

Conclusions

<

Although lU is not yet possible to definitively outline

the Taurus-Littrow structure from SEP data, the following

conclusions can be made:

(1) The low loss tangents required for interference indi-

cate (less than 0.05) indicate that water in any form is

not present in the Taurus-Littrow area to a depth of at

least several hundred meters.

(2) Scattering is not important at any of the SEP frequencies.

Thls implies that there are not large numbers of scattering

. bodies with typical sizes from i0 to 300 meters in the area.

(3) The dielectric constant is about 2 - 5 near the surface,

i becoming 6 - 9 at depth. This is consistent with soll over-

lying rock.

(4) No plane two-layer theoretical model has been able to

fit the data accurately. A thinning layer, a three-layer

model or grading dielectric properties may explain the data
{ ) .-

7

better. _:

7
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(5) The Rover navigation data recorded on EVA II to

Station 2 is in good agreement with VLBI and USGS traverse

reconstructions.

O
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Figure Captions

Fig. 1. The three main waves used in radio interferometry.

The suzface wave travels above the surface of the dielectric

and the subsurface wave travels Just below it. _ecause these

two waves travel at different velocities, their beat f_equen¢_

is a function of the dielectric constant. Any reflected waves

from 8 subsurface horizon also influence the interference

pattern (after Strang_ay, e__tel.,_. 1974).

Fig. 2. Theoretical solutions and scale model data for a

dielectric over a perfect reflector. The inaccuracy of the

geoemtric optics approach for thin layer_ is readily apparent.

This type of comparison confirms that the theoretical solutions

are correct (after Annan, et el., 1974).

Fig. 3. Interpretation of radio interferometry data from

the Athabasca Glacier by comparison to theoretical curves.

Although any single component _ay have many good matches

to theory, by demanding good fits for all frequencies and

both maximum coupled components, 8 unique interpretation

could be made (after 8trang_ay, e__ta_l., 1974).

Fig. 4. Map of the Tauz_s-_t_owsltee showing the Apollo

17 Lunar Roving Vehicle traverses (marked Z, ll, and Ill),

the major station stops, the 8BP transmAttor site, and the

( _ locations of the ZP-4 deployment. SEP data were colleoted
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I_ along the first portion of traverse II (from NASA Apollo 17 i_

traverse planning documents).

Fig. 5. Sketch of the EVA-II traverse recovered from LRV ,_

navigation data, from the SEP site to Station 2. The Rover I_

stops are indicated.

Fig. 6. Orientation of the SEP antennas. Three orthogonal

magnetic field components are measured from a transmitting

antenna approximately broadside to the traverse, and three

from an antenna endfire to the traverse. The two trans-

mitting antennas were laid out on the surface in the form of

a cross and activated alternately (after Strangway, et a__l.,

1974). i!

Fig. 7a,b,c. EVA-II traverse reconstruction as compiled from

(i} LRV navigation data recorded by SEP_ (li) Goddard Very _

Long Baseline Interferometryl and (ill) U.S.G.S. traverse

• reconstruction from photographic information. The three

independent reconstructions are in good agreement out to

2 or 3 km, although they disagree more than expected near

LRV-2 and 3 (see Table i).

Fig. $ (a-l). The surface Electrical Properties Experiment li_

data for all 36 components. Each component has been plotted _

Eas a function oE free space wavelength, out to 1.7 km or

,F!
b
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20 wavelengths (whichever is smaller). The vertical scale

is in dB, with a reference at -90 dBm, as shown. The ,;

component is labelled at the end of the curve; H_ endfire, :

H_ and H z broadside are maximum coupled; the others, minimum _

coupled. The position of the EP-4 deployment is indicated. _'

Since a 360 ° turn was made at that point, the values during ,?
[

the turn have been removed. Note that since a standard x-y

plot format has been used, west is to the right in these

plots• :,

Fig. 9 (a-f). The two components used for interpretation - ?

Hp and g z broadside (solid lines). The theoretical curves

for the parameters given in Table 2 and Figure 10(b) are :_

also shown (dashed lines). )

Fig. i0. Two possible deviations from a two-layer model: :.
J

(a) a thinning layer that de-couples the subsurface near

the SEP site, but is transparent further west; (b} a three-

layer model (Table 21.

:i
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: 15. Surface Electrical Properties Experiment _i
. Gene S/tureens, at David Stmngway, bt Peter Annan, c Richard Flaker,a

Lawrence Bannister.;aRaymon Brown, a William Cooper.a Deal: Cublev, b
Joseph deBettencourt," Anthony W.England, e_ John Groener, aJin-Au Kong. a

Gerald LaTorraca. a James Meyer.a Ved Nanda, a David Redmml, c
James Rossiter, c Leung Tsang,a Joseph Urner.d and Raymond Watts¢

The mfface electrical properties (SEP) experiment to the smface of the Moon. The SEP experiment will
was used to explore the subsurface material of the extend to depth tho_ visual observationsmade at the
Apollo 17 landing site by means of electromagnetic surface and perhaps reveal features at depth that do

: radiation. The expeflment was dedgned to detect not reach the surface.
electricallayering,discretescatteringbodies,and the

possiblepresenceof water. From the analysisof the DESCRIPTION OF THE EXPERIMENT
data, it was expected that values of theelectflcal
properties(dielectricconstantand losstangent)of The basic principle of the SEP experiment is
lunar material in dtu would be obtained, interferop_etry. This principle involves only the inter. ;

The SEP experiment is important for several ference of two or more waves to produce an
reasons. First, the values of the electrical properties interference pattern. The inversion of the interference :
of the outer few kilometers of rock and soil of the pattern in terms of the spatial distribution of the _
Moon, measured in situ for the first time, may help electrical properties is the basic aim of the experi-
others interpret many observations already nude with ment (fig 15-1). The experiment is most easily
both Earth-based and lunar orbital bistatic radar, understood in terms of a sintde dipole antenna for
Second, the SEP experiment will provide data that radiating electrorr,agnetic energy and a loop receiver
Jureneeded to interpret the observations made with for measuring the magnitudes of the fields. In the
the lunar sounder, an Apollo 17 orbital experiment.
In the Apollo lunar sounder experiment, the time

intervals required for electromagnetic waves to pane- _
trate the Moon, be reflected, and return to the

• surface of the Moon were measured. Of more interest Receiver

than times, however, are depths, which can be ,.Tr|flsmttwr RKetvtngantenna. ! _
obtained from the lunar sounder delay times and the ,,' _
dielectric constant that is measuredin the SEP -_"oTrtnmltti_mtenna _' experiment.Third, the resultsof the SEPexperiment --_'"
are expected to help define the stratigraphy of the PithI Lunarrevt_l :

LuMrlurfar,e%.,, _ _lhlgla

Apollo 17 landing rite. Visual observations made by _ :

the crewmen and recorded with camerasare restricted _ _ :

aMwlchutettsInstituteofTechnololLY. ,_. _ *
bNASALyndonB.JohnsonSpaceCenter. - _' •
©UnJverdtyof Toronto. FIGURE 15-1.-SimplifiedschematicdiqFam of the SEP
dltaytheonCompany. experiment.Electtomqff_ticradiation from the trunk- _
oU.S.Geolol_ Survey. mitti_ dipole antennatzq,vels alongpath I (abovethe

I'7 'r : tPrlodpalhweltiptor, surface),Idonllpath 2 (belowthe surface),and, if
;Coinvestiptor. reflectorsatepresent,alonlpath3.

15-1 i .:

_. ¢p_- _............ : " " * , . " " ; " . JJJI_IU_I B ' ',
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early developmental stages of this experiment, ex- of the medium, and the rate at which the field
scaly this configuration was used (ref. 15-I). strength decreases with distance is related to the loss

The electromagnetic energy radiated from the tangent of the medium. This type of pattern is
transmitting antenna travels along various paths. In present in some of the lunardata.
the "half-space" case, one wave travels above the If a reflecting horizon occurs at depth, such as the
interface through "free" space and another travels case shown schematically in figure 15-I, then a
below the interface through subsurface material, reflected wave will interfere at the surface of the

Because the velocity of electromagnetic waves in a medium with the other waves. Figure 15-3 is a
solid medium is different from that in free space, the theoretical curve showing the distinct interference
two waves interfere and produce a distinctive interfer- patt^r,_ produced by a reflected wave. The presence
once pattern. This case has been studied extensively of aoditional reflecting horizons in the subsurface
from both experimental and theoretical viewpoints would produce still more complicated interference

_, since 1909 (ref. 15-2). The correct mathematical patterns.

solutions, although somewhat complicated, are now In the Apollo 17 SEP experiment, two _rossedwell known (tel 15-3). An example of a theoretical dipole antennas that radiated sequentially were used.

i interference pattern for the half-space case is shown In addition, several frequencies-l, 2.1, 4, 8.1, 16,in figure 15-2. The spacing between successive maxi- and 32.1 MHz-were used. Because each transmitting

i successive minimums related the antenna radiates at each for
mums or is to frequency suf[Jcient]ya

frequency of the wave and to the dielectric constant long time, the experiment results can be analyzed in
terms of continuous waves. The shortest sampling

i time at the lowest frequency includes approximately33 000 cycles.
I

l THEORETICAL BASIS

The SEPexperimentis the first geophysicalfield
technique to use the dielectric propertiesof rocks
rather than the conductiveproperties,in that sense,

.S Max• -5.fd6 the experimentis entirelynew. Consequently,all the
i d.o.Qsoo_

E ._e • 0.1=), 0.56z"
.41

Max• I.159

Mix • lO.E6 ._

==_.d•0.rts0_,
Mu • 10.539 I" ._

d_O.)5_OX " .el ,

0 Z 4 e 8 1o 12 t4 Is 18 _o _ .lit
Distance,free-siNcewlvtlengths

FIGUREIS-Z-Theoreticalinterferencepetternfora half-
tl_ce case,in whichmedium1 is mUdandmedium2 b
freesps_;whendepthd = O,medium! Ion tanlentp, -
0.0300, medium2 loss tlmpnt Ps q *', medium2 0 LM 7.50 10.el ILS0 IS.el ii.50 N.W
dielectricccmmnteva• -, tadfrequency/'-299.8MHz. Olmnce.h'm-slMt*_mwi,t_ths

_,_. The wmbol Hs representsthe verticalcomponentof the FIGUREIS-3.-Theoretical_urvefor the case of • dnlib, mslnettc field. Thepoints on the ordinateindicatethe layer over s reflector. The layer is four bee-space
" _" maximum(max)valuesofeachwavepattern, wavelengths(4_.01thick(ref. l 5-8).
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SURFACE ELECTRICALPROPI'RTIESEXPERIMENT 15-3

experimental techniques and most of the theoretical _ is the attenuation constant. A typical component of
basis have been developed specifically for the lunar electric field E at a large distance R from the
experiment. Descriptions of the early versions (circa radiating source varies with R according to
1968) of the technique are given in references 15-1,

Bee j/oR Eoe-e_e-$$R15-4, and 15-5. In this report, the physical and E • "" = (15-1) :
mathematical bids of the experiment is outlined and
the discussions in references 15-6 to 15-8 are fo]- where Eo is a reference value of E (independent of
lowed. Theoretical work has been limited to the R).

electric and magnetic fields that result from dipole The complex relativedielectric constant is
antennas on plane, horizontal, layered media. For
mathematical details, the reader is referred to the _' ....r' e.(3. dP) c, jx (15-2)

original sources, where p _,sthe losstangent
in the theoretical development,condderation is

given first to electromagnetic propagation in an = 0-"-2"-- = 600 _ (15-3)
unbounded, homogeneous, isotropic dissipative reed. ,o _c0_r c
ium and next to propagation neartheplane interface r
of two semi-infinite homogeneous media (specialized with 7,o the free.space wavelength in meters.
to a lofty dielectric below an empty (or free) space The refractive index relative to vacuum is
region, popularly called the half.space case). Then,
the effects of inhomoganeous horizontal stratification N • _ • _/_r(2 - dP) t / 2 (I 5-4) f

are considered, specialized initially to a Iossy dielec- The evaluation of the complex radical may be
tric region of two layers, the first of depth d and the accomplished by the 50-yr-old method of G. W.
zecond of infinite depth and having electrical prop- Pierce (ref. 15-14), recently revived by King (ref.
erties differing from the adjacent layer and the
semi-infinite space above. 15-9), as follows.

- f(p) - j_(p) (15.5)
UNBOUNDED, HOMOGENEOUS, LOSSY

DIELECTRIC MEDIA where

pative media it treated adequately in references 15.3 f(P) • eosh sinn -1 • + p2 + 1

and 15-9 to :5-13. Variationof electric and magnetic (_ ) [_( Z%/_p 2 )]_/_
fields with time t is usually expressedasexp(jcot) _7(P)= stnh $Jnh "1 p = - l

where the rotat/veoperatorj = _ and the radian

frequency co = 2ef (where the frequency f is Thus, the complex phase constant k may be
expreued in hertz); this exponential is hereafter written as
mppretd. Meter-kilogram-second units are used

where, in vacuo,the dielectricconstantor permittiv- k - iS- ,ja - 80%/'_r• 80N - 6o_[f(P) - d:a(p)]
ity eo = 1 X 10-*/36,r F/m and the permeability (15-6)
kte • 4f X !0-* FUm.The phasevelocity in vacuo is

c = 1/_qr_"_o= 3 X lOs m/iec. Mathematically, the where the phase constant (real) in vacuo _o • 2_r/Xo•
fieldexpreudonsaresolutionsto Maxwell'sequations, _ p_P'_oeo,Hence :;

The diulpative medium is characterized by its

electrical comtants, real relativedielectricconstanter
and conductivityo (mho/m). (For avacuum, er = I.) e . _o%/T_r/'(p),r,,,t/m
The media are customarily considered to be nonmag-

netic with permeability # • P0. The finite value of o x _, m (I 5-7) _;
.,_ givesdie to a complexrelatived/electricconstante'v, • f

_,J a complex rffractlve index N, and a complex phase
constantk • _ -JQ where_ is the phase constantand c, • e0_-_eg(p), zip/-,
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_. 15-4 APOLLO 17 I'RI'LIMINARY S('II'.'Nf'E RF.PORT

When the loss tangent p is small, _:Jyp < 0.5, then so-calted half-space case: the integral method of
J09) = 1 and g(p) = p[2; this is the case crlcounter."d in ;olu!ion (ref. 15-3) involves general integrtds ,fl the

the lunar SEP experiment, so that type

s = eo,_"r 2,, f® -'_la-y2,_=.-_--, rad/m I(a,b,r) = ,.°tk)e H01(xr)x d._ (15-9)

),
= _.._0,

X _ m (15-8) where the function b-X),) is devoid el e..polenu,
behavior, ttI_ is the zero-order ilankel function of the

60_a Np/m first kind, and "/i = (_2 ._ k_)v., may be culled _t
complex propagatio_ factor (t -: 1 tlerz(_tiv_gthe t,.mar
soil _d i ---2 the space above). Tl,e variable _, used it.

ctB/l_ equations ( I5-9) urtcI(15-10) is a comp'_exsepar:_tion
= 1.61__.__, (or eigen) vari,lble of integrall_,n and shouhl not he

confused with the wavelength.

and ot is independent of frequency. If o and cr are in a cylindrical co,.,rdinatc system with the source
constant with frequency, then p is proportional to/'; dipole at a height h above the origin of the
if # is constant with f, then o/er is proportional to f. coordinates (O, _. z), two essential integrals U(a,b,0

and V(a,b.r) are reooired to determine the vector
potential 11 from wtuch the fields E and H are

, Propagation in Layered Media derived. The relationship of E and tl is derived from

For propagation in semi-infinite space near and Maxwell's equations and continuity relations at the
above a semi.infinite, homogeneous (nonlayered) space-dielectric plane boundary (z -- 0). The Uand V
lossy dielectric, see references 15-3, 15-9, 15-10. and inlegrals differ in the value of FO,) used; thus, fi)r the
15.15 to 15.17. References 15-16 and 15-17 are Vintegral
especially useful for layered media. Earlier applica-

tion was to ground.wave propagation along the k2_ve _ l
! surface of the Earth, generally where 6,e lOSSt,ngent _'(x) = (15-10)

of the Earth is large. The mathematical solutions are 1(t - -
! Involved; they were solved initially by Sommerfeld in
; 1909 (ref. 15-2) with later (1026) carrection of the where
i famous _ sign error (ref. 15-18). A complete

history, with proof of the existence of Sommerfeld's k2

controversial surface wave, is given by Bafios (ref. k_ = _._..k--
15-3). The resulting field equations (for electric field ;F + 1 (I 5-1I)

E and magnetic field It) depend on the nature of the _t k.source. In theory, there are four source dipoles: the Iv = _ = _ =. try--_
horizontal electric dipole (HED) and verti, al electric k2 1_0
dipole (wires), the horizontal magnetic dipole, and
the vertical magnetic dipole (VMD). In the SEP In equation (15.11), the refractive index N (eq.
experiment, a tuned series of wire antenna radiators (15-4)) is the reciprocal of n u_d by Bafios (ref.
(thus extensions of the elemental HED) is used, and 15-3) and others.
the cylindrical coordinate values of magnetic field For evaluating a component of the ma_p_elicfield .'

lip, H¢,, md Hz are measured. (e.g., Hz) in the SEP experiment, the U integral is
The major difference in typical ground-wave prop. required (actually the partial derivative of U). Itere,

agation from that on the Moon (or in earthbound a = O, b = h + z, and the exponential involving u in

glaciers and deserts)Is in the low value._of e, and p equation (15-9) is unity; thus, U is written as

_. for the latter. For the case of a semi.infinite Moon U(O,b,r). If h = 0, then U becomes U(O,z,r). i

'_ " below semi.infinite space, the solution is that for the The integral solution involves, generally, saddle.

_t "* k ,"
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SURFACE FLECTRICAL PROPFRTIFS I:XPFRIMENT 15-5

point or double-saddle.point approximation methods integrals, similar to equation (! 5.9). The theoretical
(tel 15-3). However, if h = z = O, the solution for problem is reduced to that of solving the integrals.

_i U(O,O,r)is exact, as found by Van derPol. Thus, the Three techniques have been used: (1) numericalexpressions for Hz waves broadside to the horizontal integration on a digital computer, (2) asymptotic

wire (HED) are exact as are those for the tangential expansions that lead to geometrical optics approxi-component of electric field E¢,(VMD) (first noted by mations, and (3) contour integration to yield a

_ Wait (ref. 15-16)). If h or z (or both) are nonzero norm',d mcxie solution (mode). In the geometricalvalues, approximat,_- methods must be used; these optics approximation (GOA) method, the resulting
_- methods are very laborious because complex contour field at the receiver consists of the space and lateral

integration must be used with consequent studies of wave comlxments (the half.space case) plus those
poles and branch cuts in the integralsl(a,b,r), attributable to reflections from the boundary be-

The resulting field expression for the half.space tween the upper layer of thickness c/and the l,_wer

_ case consists of two components, one a wave traveling semi-infinite layer. (Lateral w;:_es at boul_dary
ibis

above the surface with the phase velocity of space and their effects have been generally neglected.) The

and the second lateral these two waves formulation of reflections is approximate, but the
a wave;

interfere. An example is shown in figure 15-2 for Hz GOA solution is considered satisfactory if the depth d
lateral waves broadside to an HED for several values is greater than the wavelength ), in the uppel layer.

of err and Pl ffi 0.03. The lateral wave is that An example is shown in figure ! 5.3, where d = 4_o,

component of energy traveling in the dielectric but waves to anfor lateral broadside HED. In the mode

refracting across the boundary to reach the receiver approach, the contributions to the integrals are
_ at height h = z. identified in terms of the normal modes of wave

For typical terrestrial soils, the loss tangent p of propagation.
_- the ground is so high that the lateral wave is relatively Multiple layers.-.Solutions to the various integrals

too small to be observed. However, in glaciers, polar (eq. (15.9)) for multiple layers can also be obtained
regions, and deserts, such interference patterns as by numerical integration and by using normal mode

i those shown in 15.3 be observed. The numerical integration method (refs, 15-8
figure may theory.

and 15-19) provides quite exact solutions but requires

i much computer time; however, the method providesHorizontal Stratification
a ci_eck on other techniques and can be extended

_ Layers.-Wave propagation in stratified re- readily to large numbers of layers. In the GOA

ha= been treated generally by Brekhovskikh method, the problem is treated in terms or (thus,oon= rays
(tel 15-17) and Wait (ref. 15-16); the properties of distances must be large compared with various wave.
antennu in such regions have been discussed by lengths); therefore, solutions that are readily inter-

Galcjs (ref. 15-15). As specified for the SEP experi, pretable against a background of physical optics are
n_nt, the previously mentioned treatments in refer, provided. Unfortunately, the GOA is invalid for
ence= 15-6 and 15.8 find useful application. The "thi," layer,,, the case for both glaciers and the Moon

geometry is that of figure 15-4. The solutions are for at least some of the SEP experiment frequene:es.
The formtdation and solutions for certain paras, ,s

Z are _ven in references 15.6 and 15-8. The theoreh _I

l '_ [ curve for one set of parameters is shown in figure

I_1 _Y Y 15-5. The lack of agreement between the GOA and
MullumI 4,_ • _ X the numerical integration at distances less than 7k is

MelllumZ _'2 Pz _1 caused by the approximations in the GOA and. j indicates clearly that the proper solution must be

Ps chosen for a particular experimental situation. The
Mmllum3 "3 normal mode solution, valid for thin layers such as

_" appear to be present at the Apollo 17 site, was

FIGUREl$.4.-.Geometryfor theea_ of msinglelayerovera formulated by Tsang, Kong, and Simmons (ref. ! 5-g).
_ half space.Medium1,a _ 0 (freespace);medmm2, - h < We are ralher sure that our various formulations of

' " s < O;medium3,a <-h. the sohttion are correct. These formulations have

Id_ .. -..... -- - " '
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l.)r- ,", -GOA treeq}ace,,•I
1. t- i "......
i.l_-/ ', _ L_un_a:_ ?,_rtace1.Of / _D__.*.3F, .--Numericalintegration

...... j/!\ y', '•6t \,_.."7"%,
•51- -

.31- _ b ,i_

'0 i L l J I * • i i J i

4 5 6 l 8 9 l0 II 12 13 14

Oislince.wa.len,hs _// ' Br0_si0e I "
FIGURE 15-$.-Comparlsonof the geometricaloptics ap- pattern

proximation(dashedcurve)with the Tsangexactsolution (ai
(solid curve), obtainedby numericalintegration,for a
dngle-layer case (ref. 15-8). Note the excellent agreement :,

fc,rallpeaksexceptthefirst. _

been testedagainstfielddatacollectedon glaciersfor

which thegeometrywas known from previousinvesti-

gationsusingsuch othertechniquesasseismic,grav-

ity,and drilling(refs.15-I,15-8,and 15-20).They

have also been tested against laboratory data obtained
- , ,g"

with analog scalemodels. - ,., ..:_,
The antenna radiatien patterns of both the receiv- ' '" ,;- J

ing loops and the transmitting dipoles are important '" _ '<

in the analysis of the lunar data. The theoretical '.,, ": :+

patterns for the transmitting antenna have been _k" ,' . ;\L

calculated(ref.15-21),and theresultsareshown in _.;
figure 15-6. It has not been possible to calculate, with _, _.
equal confidence, the patterns for the receiving roll
antennas becauseof the effects of the lunar roving I'IGURE lS-6.-Model of thetheoretical radiation pattern
vehicle (LRV). From the data obtained on the Moon, for the SEP experiment transmitting antenna on the
however, it is deduced that the influence tin the/tz Moor=(ref. 15-27). (a) Diagram.qb) _l,,tograph.

component is minimal; thus, our preliminary data
analysis is based on that component. In order to

Interpret the H o and H_ components, the effec,of SEP exlmriment data, inforntation on the location of
the radiation pattern of the receiving antenna must be :he LRV, obtained front the LRV navigation system,
removed, was also) recorded on the tape.

THE EQUIPMENT
Description

On the Moon, the crewmen deployed a small,

low.power transmitter (fig. 13.7) arid laid on the The electromagnetic radiatitm at the six SF.P

surface two crosseddipole antennas that were 70 n| experiment frequencies is transmitted and received

long tip to tip. The receiver and receiving antennas, according to the scheme shown ill figure I5.'L ()lie
shown in figure 15-8, were mounted on the LRV. data Ir;inle, witi¢ll is 18,4SCc ill ihliillhlii, Cqlli'_i._lsof

_. Inside the receiver, there was a tape recorder which six 6.4-g,c suhhdnles Ihal ;ire idenlic.'il except h. Ihe

recorded the data on magnetic tape. The entire tape receivercalibration and syllcllrllliiZ:illllli llrt_Lc_'_.In
_ recorder, the data storage electronics assembly _uhfranlc I, [(,r example, the receiver ,scahlm_lcd al

. I, (I_EA), was returned to Earth. In addition to the 32.1 and 16 Mllz and the synchronization signal is

,r

i
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]

\

?

/ •c" ;

* ",¢.

.... .'t_

FIGURE l$-7.-The SEP experiment transmittershowtl with ,
the solar panel power source and dipole antennas de- __._

ployed. The trlmtmitter electronics package iscovered on t_ '_

the bottom five sides with a thermal blanket. I_cau,_ the
top of the unit is shaded by the solar panel, the uncovered
lUfflici needs only a coat of thermal paint to provide

I lalequatecooling for the enclosed electronics. The balance
between helit lost to cold qmce by radiation and that "
lettetated Jndde the unit by the electronics equipment i_ i

, very .,cite and requirescareful.ermal design. _t_" ___. -.-'_g_

tam.tied on the north-south (N-S) dipole antenna _"./_ $."__i_:_...... " _ ":

and received on the X antenna. In subframe 2, the "_.'_=_qW_'i--.,p.........""'....._...... _ _
receiver is calibrated at 8.1 and 4 MHz and the

(E.W) antenna and received on the Y antenna. Eac_ FIGURE I5.& -Th_SEP ex_riment rcce_verend antennL_.
expsdment frequency sequence is repeated exactly as The receiver electronics, including tape recorder and
shown in all six subftantes. Each experiment fie- battery, ate contained in the box (23 ontO), which usually

quency ts transmitted first on tile N.S atttenna fog is compktcly enclo,_d in a thermal blanket. The thermal
100 mtec and then on the E.W antenna for 100 tn_ec, blanket ha_ Men opened to _ow Ol)tical surfat'e tel]co-

trigs. The three4oop antenna assembly, Ibldt,tl d.ting the
During each IO0-msec transmission interval, the journey to the Moon, is _hown unfolded as it wa_u.,a.,don
receiver "looks" at the transmitted signal for a period the Moon,
of 33 tmec with eae:h of the three orthogtmal (X,YoZ)

receiving loops. In addition to the preceding opera. The receiver acquires tile transmitter signal _.
! _ aloha, trace ear;It subframe, the receiver td_serves quenc_ automatically as Ions as the sig..I extx'ed._ ;0

environmental noise and records its amplitude, given thresltold. Synchronitattion .f the receiver is
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_ 15-8 APOLLO17 PRELIMINARYSCIFNCE REPORT

i l" 100me( . 4 100mse¢------_ Such functions as signal synchronization, fie-

] Tranmtt .... Transmit quencymixing,arid antennaswitchingarecontrolledN-SaMenns,16MHx E-Wsntentul.16MHz by the timing section, which is, in turn, crystal
Itd._w I AtceiwI Rt,cetw R_vt I Rec_w_R_I' controlled for stability. The entire receiver assemblyKmtlnnaLV' mtenna[ZtnMnnaiKIntenn_vIntenna[Zantenna

is battery powered using primary cells and is en-

i " "_..,... "-,-_ closed, except for the antenna assembly, in a thermalSaw1 m2e0_ blanket. The thermal blanket Ilas two flaps that may

I' [ l i ] _[ [ 1 _ be opened to expose opticalsurface reflectors, which
1 _2.1 I.l 3Z.I 15 z 32.1 4 _2.t form a thermal radiator for internally produced heat

w|dle reflecting heat from the Sun, to control the

" ]) The SEP experiment transmitter (figs. 15-7 and
_" 15-11) is powered by solar cell pan is that arc

l .l _.! 15 12.1 4 . designed to provide a minimum output of I0.0 W at
15 V and 1.10 W at 5 V. Like the receiver, the

• _ "l I i [ ] ] t'_'_wYnc_ transmitter timing sequence is crystal controlled fr,r
ze 32.1 s.t 2.t le _.t 1 stability. Also, separate stable crystal mcillaton

[ne generate the signals that are radiated by the dipole
'_ ], t.em ,I antennas placed on the lunar surface. Because the

...... ct"_ig_l_ antennas axe required to radiate energy at six differ.
SF-t SF-2 , S,F-_, _-4 SF-S Sf-6k,,2.,,,dk,,.,,,11-,.,,,Ik,=.,41-,.,,,1k,,.,,,l eat frequencies,they are constructedinse"tions(fig.

i SyncN.Si_ncZ.Wl_ncN.Sl[f_/nc[.Wl{SyncN.SllSYnc[.W[ 15-12), and each section is electrically separated by
i [IRlgttWX:J[Rege jiWV'_eCeiwzJ[!nK,twx:[_t_mv[_ Jtwz electrical filters (dgnal traps). Each sectionof the
: _ _ 4 , , antenna is of the properelectrical length for optimum

I

: _"_"_ omtram _ performance. The dipole antennas, each 70 m long
• )l.4 _ (tip to tip), are made of insulated wirebetween signal
' FIGURE l$-9.-The SEP experiment data format. The basic traps and were stored on reels unU! deployed.

¢ygle, _own in the center of the diagram, _taxts with the
16-MHz dlnai and ends with the synchronization (sync)
flame in the lower t_t comer. The cycle is 6.4 saclong. Performance on the Lunar Surface
(Values m frequencies in megahertz.) The upper part of
the _ draws a typical "data" frame. However, the The crewmendeployed the SEP experiment equip

¢Mibration(¢al)framechangessucceuivelythrough ment .:uring the first period of extravehicularactivity
_ the _bftame (SF) sequenceshownat the bottomof the (EVA) Photographs of the receiver and of the

diaptm, transmitterand the transmitting antenna are shownIn
, figures 15-13 and 15-14, respectively. Stereographic

ac¢ompUihed when both (or either of) the I- and photographs will be used to obtain the location of the

2.I-MHz signalsexceed a given threshold.A block starting point of the SF.JPexperimentprofiles to
diqram of the SEP experimentreceiveris shownin within ! m. The LRV, with iu navigationsystem,was
f_use 15-10. u_d to mark straight, orthogonalLinesto be usedas

The loop antennasare connectedsequentiallyto a guidesfor deployingthe antenna.Especiallyimpor-
low.noiseamplifiersection,wldchamplifies,converts tant for the analyzilof the datawasthefact that the
(ill fnlqueney), and logarithmically comprems the arms of the tnmlmitting Imtenna were laid out
amplitude of the receiveddgnal. A conttant ampH. straight and at right anglesto each other. The SEP
rude, variable frequen,.'y dgnal (in the band 300 to experimentoperations were nominal during EVA.I.
3000 lk) om_rmpondin| to the lopdthm of the During the rest period between FVA.I and EVA.2,
mcetveddlpud amplitude wu recordedon magnetic howeve;, the temperature of the SEP experiment

in the I_EA. The I_EA cm recordnearly I0 hr recetver Increased;subsequentoverheating hampered
of data. Upon completion of the experiment, the the SEP experiment operation until the DSEA m-

_ _ I_EA w_ removed from the receiver for return to corder wu removed in the middle of EVA.3 to
Earth. prevent loss of data that had been recordedaJrcady
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[ e- OlcltlMornlmtngmodule Drlwramplifierm_ute "_ "'Anle_ "1

; ! ......... Tr_q_n_y9enerJt0r
4M7,1_

* [ H
: i Z-Wgz0_ Agenumr

I

t H °*+'_r t .''' ,'.. _ N" S

4.0-MHz0so AlVnumr ' amptJfier 0,Summer i 'I- --'1 I I I
and , j f Ii+

+ 8A-MHz_ AtllnuJl0r i I , .,-, I Driver I £-W._ v amplifier ! I
+ ' ' +t I
? IlL Altenu_or I

• i 'I
! .! Altenu_0r _"- - -- J
P r

......... ,o Ilfldudtl_l
: 1.4- -. -T-J oKIIIIMrsI rl_li0ftt t I
: To fo J

N-S [-W I _ +lSV
driwrs clrlwrs I

L, ........................ J _, ............. .j

FIGURE15-1I,-Bk_k dbpamof theSEPexperimenttnmmdttw.

on the mMnetic tape. The receiver containeda the SEPexpedmenttnmsmftterIn 100-mincrements,
thermometer that wss monitored by the crewmen, and the computedbeatingto the SEP experiment
Despitethe efforts of the crewmento control the trensrnJtterIn I° increments.The naviptinn:d data
temperature,the receiverbecame too hot and wm are approximatebemuseof wheel slippaOeon the
tumedoFfbyathermmilyoperatedswitch, lunar surface end willbe Improved greatly by

Dill wereobtainedduringEVA-2 on the traverses incl.dJngadditionlddoll on the LRV locationob.
from the SEP experimentsite towardstation 2 and rainedfrom photolpaphs,crewcomments,andlong.
from station4 towaxdthe SEPexpemnentsite.Deta baselineinterfcrumetry.
Nre not ob_ned duflng th- early part of EVA-3 The securedkind of data, the primary _EPexperi.
becausethe receiverswitchwasin the "standby" ix), meat data.consistsof the threeorthooonJdI_IOi|C

siZionrather than "operate." Apparently, the Irons- components�Ix, H_, andHe, recordedasa functhm
ndtteroperatednominagythroughoutthe mission, of frequenoj and of tranzmJtUn8mtenna (N-S or

E-W).An exampleof the fieldstrengthchitstsshown
in figure15-15.THE DATA

The third kind of data, temperatureOf the SE_
kinds of _ were recorded in the S_ experiment m_r, was obtained for t in the

aped_t: _.1 dots, e_tm_etic field postrdght ena]ysisof the expadmmzt. Because of the
Itnmllhs, _d the intemml temperature of the re- zendtjvlty of all mMn_llc tape to tampemure, the
_. The n_fl_ ,d _ta, _t_md from the LRY _tentI -t hal of data from exce-dve temperature in

+ _ nmlpthm w_em, Includedodometerpules at 0.5.m the SEP experimentreceiver had beenenUctpated.
incremohtsJ_romtwo wheels,the _,'omputedr_ge to /dthoup,h protection qpdnst ove.*heltin| had been

. . .• + • _<
_L -- + - - ;
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Cr_ roW-out TABLE 15-I. i_,etmUna,y Remits Jor I!z,
al$1Jlion2 IV.q Tran._nitting Antenna

3_.o tm[-. lO_"_o13.7K_

- ...s tp:o.oml
MHt Ca) (b_ m

m.I ......

2ql4.3 70[ I t | I 32.1 2.7 3.0 5.7
1tI:3G00 I_5G_0 l_l_00 142:_00 1_5G_ 16 3.7 3.9 10

Groundel_ lime,at:man:sac Iq.I 4.I 4.2 !8
I I i I J 4 t 4.2 4.11 37

09:_.00 _9_k00 {Bcd3:G00&_.00 0i:_Jc0O 2.1 I 6.3 6.4 57
G.m.t., hr:mln:.se¢ ! 6 I 6.3 122

FIGURE15.16.-InWmaltemperaturewoflle of the SEP
_t _ _ the_ from the SEP s_tr;¢ _:onstanlof layer.
npestmmtWetostation2onDKemlmr13,1972. bDiek'._,dccons;antof semi-infinitehalfspacebeneath

laym.

theoreticaldevelopment.For dlorous solutions,we
me limited to models with homopne_s layers near the surface to opproxirrmtely5 ata depth ofSO
Ix)ufldad by pkine, _tld su_aces. However, _ to 60 m. A dhiconlifluity hi present at 50 to 60 m,
within the limitations of our present theory, vldues of where er increases to a value of 6 to 6.5. Becauseno
the properties of the lunarnuterttl in situhavebeen reflectionappem to be pb,'_entin the I-MHz data,
estimated,andlameinterestinI conclusionsaboutthe we expect that e_ doesnot increasebetween,,'., m
electricalstructureof the Taums.LJltrowsite have andat least 2.5 km. Comparedto terrestrialv.Z ,ca,
been obtained, the losstangenthi quite low (a_m_mtely 0.003) It

The discumlon in this report is based mdnly on all SEP experiment frequencies. On the basis of this
the anldyds of Ha, the vertical component of the low value of the JaM taflf_qlI,we refer that water is
muSueflcfield, for two remons,lint, althoush the probablynot presentat theApollo 17site.
radJatinn Pettems of the receJvinl antenmuhavenot In the alternate structural model, the cause o1"the
beeflIlllmm_d. It hiexpectedthattheHz datam less apparentchanlip of dielectricconstantwith depth
dbtmled alumthoas of' the other two compcx_ts, luudllnedto s doptn8 interface between# thin upper
Se,'ond, the appemmce of the Hz dote resembles layer with er = 3 to e, = 4 and p < 0.04 and a thick
more domly the Ilader :bta, which compshe our Jo_er layer with er - 6.5 and p • 0.04. IUsorous
beck4wmmd_'u. theoretical expressions have not yet been obtained

Two quite diffenmt structural models of Lhc for aids case either. However, we haveconfidence in
Apollo 17 die have been developed to account for the 0eneml effects attributed to o doplnl interface
the obsemtious. AJlhoulh neither Is breed on dJof _i of the fedJowinglimiting_mesof h_rizontad
ous themy, we belk_ thai each hi correct in the Mter(aces.

elnentlaJfutures. The first model,p_fened by mo_ I. For a very thin layer (thickness< 0.1)0, the
members of the SEP experiment team, hi one Jn interfe,mcc pattern is cqulvalent to that of a heft

' which the dlek_: comtant Inmt_ with depth.
Each of the lu_u p¢ofllescanbe mmcbedquitewed speceinwhiche,and p havethe v_luesofthelower

i with the thl_etiad curvesbatedon a sinlilelayer, layer ([i 8. l S.I 8. upper curve).2. Pm a lay_withtldckneu between 0.1_.and
The Fvnmuten for each of them six dnllle.layer 0.._, the individual "willk_" of the interference
modab are du)wn hs table 15-1,md a typical example Pattern dJ_ppeer IN8. I 5-18, intermediate curios).
of the match between the tluorettcal and obeerved 3. Fm a Ja)'erwith thickness pealer than appn:xi.
cun_ hi du)wn in fJsure15.15. The compodteof

nutely O.0,, the unml "reN_,ed" waveuppeassin
tlum mvend modelshi thown in fiaum 15-17. We the pattern.
bdJeve that the Hs _ta indt_te that the dlekctdc
Cr_mtanlbum_meswith depth from a value of 2.5 to 3 The tmudtivtty of"the intet_anmce Pettam of a thin
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Abstract

The radio tnterferometry technique described by Rossiter et.al (1973)

i is used to study extremely resistive electrical structures. This paper

_: describes an inversion procedure which can be applted to measurementsof

the fields radiated by a long-line current source. The measurements are

the amplitude of one magnetic field componentand the complex ratio of

the two (verticaland horizontal)magneticfieldcomponents. Data can

be directlyinvertedto the point of obtaininga plane-waveimpedance

spectrum. The Fr_chetkernels(usedto obtainthe dielectricstructure

from the impedancespectrumby the Backus-Gilbertmethod)are derived.

Processingthe data to obtainthe impedancespectrumsl_ouldspeedup

the inversionprocess. The procedurefor derivingthe impedance

spectrumindicateswhetherthe data is inconslstentwit,_a layered

model. If thereare severalspectrawhich are consJ,stentwith the

observations,they are all retrieved.
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Introduction

Traversemeasurementsof radiowaves froma stationarytransmitter

can be used to study the depth variationof electricalparametersin a

_ufficientlyresistiveelectricalenvironment.This type of study

(calledradio interferometry)has been performedon glaciers(Rossiter

e t. aI,l.,1973,Strangwayet. al., 1974)and on themoon (Simmonset. al., I_7]). !_

It IS also probablyapplicableto permafrostareas.

The principlefeatureof the data is the variationof signalstrength

wlth distance(Figure2). The peak-and-nullpatternis the resultof

interferenceof directwaves which have traveledthroughthe air, with waves

which have traveledthroughthe dielectric. The distinctvelocitiescreate

phasedifferenceswhich lead to wave interference(Annan,1973).

The advantageof thismethodover higher-frequency'time-delay-

lasurement soundingmethodsis that a directmeasurementof the wave

velocityIn the dielectricis obtained,and no assumptionneeds to be

made about thlsparameter.

We assumea line-currentsourceof radioenerg, The sourcelies _

on the y-axis. The z-axisis verticalupward. Traversesare performed

along the x-axis. Our model for the electrlcalstructureof the earth ::

Is a generalizedlayereddielectric(FigureI) with _ - ¢(z).

It would be highlydesirableto measurethe amlltude and phase of

the variouscomponentsas a functldnof distancefrom the transmitter.

To optimize the effects of the structure on the data, however, frequencies :,
J

are chosensuch thatthe sizeof the structureand the wavelengthare
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nearlythe same. For glacierand lunarproblemsthis dictatesfrequencies

In the megahertzrange (Rossiteret. el.,1973). At these frequencies,

no phasereferenceis availablewhich can be carriedin a traverse

vehicleand which maintainstransmitt,:rphasefor sanyminutes.

It Is not difficult,though,to measurerelativephase _etweentwo
: .j

_ or more EM components. For this reason,we assumethat a measurement

of'theratioHz/Hx is made along the traverse. Thisgives us an cnalytic

functionwlth which to work. It will be assumedthatHx _ 0 anywhere

on the traverse. Conditionsfor total destructiveinterferenceare quite

stringent,and experiencewith glacierand lunardata indicatesthat Hx

Is unmeasurablysmall only on rare occasion. In sucha case, the

reciprocalratioHx/Hz can be used unlessHz is similarlyill-behaved.

The purposeof this paper is to showhow a ratiom_asurementsuch

as Hz/Hx can be processedfor applicationof the Backus-Gllbertinversion

algorithm. Derivationsar,)carriedto the pointwhere the Backus-Gilbert

theorymay be applied,but the inversionprocessitselfwill not be

discussed (see, for example, Wiggins, 1972, Gl1_rt, 197Z, or Parker, 1970).

l
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%. The Forward Problem

To develop a consistent notation, we will first solve the forward

problem. We temporarily assumethat the general layered dielectric

defined by

_ (1)

ts tn fact a ptecewtse constant functt3n given by

£1 o> ! ) -el m

-

The various di are the (positive) depths 1;othe dielectric interfaces.?

• Magnetic per_abillty is constant with _t=--/_o. .

, The source current ts given by -

_,_.,,..;" _., _,) (3)
T

Thts can be broken into componentparts according to horizontal

iaven umbet':

(x,_= ey $c,1 I_.:,._" (4)
...q_

If _ define _s by

) :

• t
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then (4) becomes

_n _sc_ ;k") _kx (6)
Theapproachwe take to the forward problemis to find the fields

which result from each partial source_s(X,Z;kx), then integrate

• over kx as in (6) to flnd the flelds from the total source_-s(X,Z).

Workingwlth a slngle partial s6urce _s (x'z;kx))all fields wlll

vary as eIkxx. This factor wlll be suppresseduntll the flnal

recomposltlonof the total flelds. Time dependenceis e"l_t, Maxwell's

equations are

_. Hy" Ex" Ez" 0 (7)

: "aF_
t_l_x = _ _._z (9)

_I (10)

'_ Equations(8)and (g)canbe substitutedinto(I0)to givethewave

C_luatlon

o'_" (11)
/

There are two independentsolutions to (11). representing up- and

down-goingwaves. A well-knownprocedureassignsarbitrary amplitude

andphaseto the down-goingwaveat the bottomof the model, then
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!! matches boundary conditions at successively higher interfaces until the

waves are known at the surface z = O. Becausethe wave at the bottom

was arbitrarilychosen,the ratioof the upgol_ to the downgoingwave

} at z - 0 is what has reallybeen detemlned. By appropriateapplication

_ of equations(8) - (I0),this can be convertedintoa determinationof

ratioEy/Hx Just below z = O.

Wedefine the impedanceby

ck ,) = -
L(.k,.) (Iz)

The superscripts refer to values Just above (+) or Just below (-) the

surface z - O. The impedance will later be generalized as a fur ctton

of depth. The value Z" has been found and is dependent.only on the

structure in the regton_z(O. The value Z+ is found for upgOingwaves

tn z)O:

k t (13)

The squareroot is chosenwlth the conditionI,,kz • O.

We now applyboundaryconditionsat z'- O. _e electricfieldis

continuous
/

E¥ �mEy" 1141

The _(Inettc field ts discontinuous, due to the partial source current

t

" ex+ - Hx"- 1 (lS)
b

j_
L
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i Were_n-tte (14) using (12):

:_, _ (16)

;: i Thts set of equations fs solved for Hx+:

? ! . .Z"I "_ H, = 'Z Z �(17)

i' Application of (12) gives
7..+

+= y. ��ì�_--
F._ l_x Z" - 7_ �(18)

Application of (8) 1:o (18) gives

�%_Z'Z" _k" :_+,. +
(19)

have derlved the flelds resultlng from a source element

__s(x'z;kx)" To get the total flelds due to the 11he source

we reinstate the suppressed factor elkxx and Integrate over kx:

_ (20)
..OI

14_cx) = _ i* _ (211

F.y £x) - _ (22

• !
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II. Converting Field Measurementsto Impedances

The next step tn the Inversion Is to convert the measured ratio

cx)
_1 (.X) _ .. (23)

r/x (x )

tnto an impedance spectrum. Our goal is to retrteve Z'(kx). Thts

: step ts analogous to the surface hamontc decomposition which is

performed on geomagnetic data r,rtor to inverting tt into a mantle
L
_ conductivity structure. The result ts a set of Independent measurements

tn the sense that each miQht have been madewithout the others. In

our case, such an experiment would consist of an |mpedancemeasurement

for a stngle plane-wave. It ts trivtal to Independently model a

structure whtch satisfies each measurement: a halfspace of constant

t_ wt11 do ntcely. The difficult task, of course, ts t_ ftnd a model

F_(z) which satisfies the entire spectrum of tmedance measurements

stml taneously.

Weapply (20) and (21) to (23):

t + (24)
•-,4m ..4m

Stnce (24) nJSt hold at each point x, tt represents a cumbersoemset

of simultaneous Integral equations for Hz+(kx). A more useful fore

can be obtatned by Fourier transforming both sides of (24):

b i

L
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where

i - (2s)

tS the Fourter transform of the measurements M(x). Equation :'25) is

•, a homogeneouspolar Fredholm equation of the second ktnd. The integral

to be singular at kx = O, but Hz+(O) =appears O, representing a

vert4cally-propagattng wave with no verttcal f_,elds. Since kx, Z+,

and Hz �areall odd functions of kx, the integral can be changed to
a

semi-infinite one with kernel [m(1 x - kx).- m(l x + kx) ].

Since the kernel of equation (25) ts observational and not

mathematical, the solution will be a computational problem and (25)

wtll become a matrix equation. The discrete approximation to (25) ts

(27)

II

where m is a Toeplttz matrix whose rows are the function m(-k x)
m

shifted by Ix; m is anttsymmetrtc. The dtagona| matrix d takes the

values of %"

Two problems confront us: 1) is there a solution to (27), and

2) ts it unique? Since (27) is an etgenvalue fom, the existence
•IL "8,

question ts equivalent to asking whether the matrix m . d has an

etgenvalue of 1. If the answer ts yes, the uniqueness question is

equivalent to asking whethe_ the etgenvalue ]ts degenerate.
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Stnce the data or the dielectric structure wtll probably not be

perfect, we should try to satisfy (27) as closely as possible. He

Introduce the error vector

and try to mtntmtze tts amplitude. Tf (27) can be solved we wt1"] get
"o

tr - O. If tt can't, then we wtll get a non-zero but mtntmal _'. _

The power contained tn _ Is minimized:

e - _" _" (29)

Jet - w_ • - Z (31)

,o _ -. ,_-, Z

then

E- _'. _ . P. _'. ;. _ _ o 1_)
let

_. _-,._
/

so P ls Hermtttan and postttve semi-definite.

)

tfW let_,_+ tE, w have 1

)
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WeIndependently but simultaneously set the coefficients of _a" and _b

to zero:

p _+ . =o
|

•, - p,,e _.e (37)p.k - ' =o

which Implies that

.7, : o (38)
Thts equation mayor may not have a solution. Wedo an etgenvalue

analysts of the matrix _. The etgenvalues are real and non-negative.

If there are no etgenvalues considerably sin1: than 1, then the observations

are Inconsistent vrlth the mathemttcal model. Zf there ts a stngle near-

zero etgonvelue, the solutton (etgenvector) ts unique and I_ has been

obtetned apart from a constant multtpllcattve factor. .
$

[f there are several near-zero but dtsttnct etgenvalues, then the

correspcmdtngetgenvectors are ortl_)gonel. Several posstble _ vectors

have been obtained whtch are consistent vlth the data. The disastrous

case occurs when the near-zero etgenvalues ere degenerate. The

etgenvectore are not necessarily orthogonel, and _ can Oe taken as any
l

ltnHr combination of then. There is a whole range of pOSSthle tI_dance
)

spectre depend|ng on the choice of constants of ¢mmbtnation.

Tim solutton of equatton (38), when tt exists, gtves the transfom

of the verUcel magnetic field, Hz(k), except for a mllttplytng factor.

If the fteld-strengt + _Hz(X)| has been measured tn addttton to the

_'" ratfo Iq(x), th_n Parseval*s theorem can be used to detemtne the
- l

i

|
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impl|tude of the mtsstng factor. The Ix_ver is forced to be equal tn '

both domtns. The phase of the factor cannot be recovered from the

) observations because tt represents an absolute phase wiattve to the !

trenmttter. However, when the recetver ts practically coincident _ _-

_ wtth the transmitter, the absolute phase of the mmettc ftelds ts

the sam as the traflsmttter current phese (the ftelds are quasi-static

i for rangesX4¢),). Thl_ condition can be used to dete_nlne the phase off

*_ the atsstng factor even though tt does not cam frm the observations. :
L

• From equation (19), :

I k, ;_" lag)

H*t �i

J

Z �tsg(v_.'nt7 (|31. t

Wehave recovered the Impedancespectrum.

i
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III. Converting Z to _
L

It ts not the purpose of this paper to discuss the actual process
Y

of inversion, but rather to set the problem up for application of the

Backus-Gtlbert inversion method (Wiggins, 1972, Gilbert, 1972, Parker, 1970). i

The developmentis nearlyidenticalto thatof Parker(1970)for inversion
"e

of geomagneticdata intomantleconductivityinformation.

We returnto equation(12),which is an expressionof the wave

impedanceas it dependson of horizontalwavenumberand on the dielectric

structure We generalizeZ(k_ to includeits variationwith depth,writing

the generalized variable as Z(z;_: Vie can ;ubstltute Haxwell's equations i
Into (12)and obtaina non-lineardifferentialequatlonfor Z which can be

) r°
( solvednumericallystartingat the bottomof themodel. Thiscorresponds

to the so.,,tton of the forward problem as discussed In'section I.

:t turns out to be algebraically advantageous, however, to introduce _"

the wave a_t ttance, :_

Hx(Z;k_1

YCz;_ " _ " (41)

I Eylz;_

i The variable Y separates from the variable c(z) tn the differential •
_luatton in a way which allows easy derivation of the Fr_che:t kernels

which are required in the inversion iteration.

_)Y 1 _H H _E _

"_" [ )-'i Ez ;)z (42) !• . _ i

aY tk _ I

_T" _" i_c+ i_v z (43) !

[ ,
,i
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Once (43) has been solved for a g,ven _ (z), then a perturbation in

will generat_ a perturbation in Y(z;k), particularly in the observable

Y(O';k). It is this property which allows iteration to a model for

(Z) which fits the observations.

Taking perturbations on (43)

'(44)

Introducing the function
l

_C_ = _L_ I_' Yc_') (45)

so that

_ (46)
t

we get

;W. (47)

- (48)

For z - O, this ts O

and thus the Frechet kernel for the observations ts

] F"-tF[',._.','>= ..;,__ (so)

C
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where o

(sl)

It shouldbe notedthat the kernelsdefinedby (50)and (51)can

be derivedin analyticform for a postulatedstructureof constant-

dielectriclayers. In thiscase the ratioof the analyticvaluesfor

H and E defines Y, so the requiredintegrationin {51)can be :i

perfomed exactly. Althougha non-lineardifferentialequationwas

usedto derivethe kernels,it Is not necessaryto continuetreating

them in that form.

If we regardthe structureas a messagewhichhas to be transmitted

through the kernels of (50) to becomeobservable, we can see what

structural information is found in what data. Let us assumea starting

structure of a homogeneoushalfspace, and investigate the observabiltty

of small perturbationsto thatstructure.

The Fr_chetkernelsin this case are givenby

-
Fhomogeneous- - ;.b) e. (52)

AS long as k_< "_]AIIl, the exponential has an absolute value of 1

(assuminga lossless medium), and informationcontentis uniformwith

depth. For k_) , the exponential decreaseswith depth. The
I ,

attenuation distance is _ . Therefore, the higher _pattal

frequencies yteld information only for the uppermost part of the structure.
)

1
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IV. otscussionandConclusions

We have demonstratedthat under idealconditionsit is possible

to recovera singleimpedancespectrumfrom traverseobservationsof

1) the ratio (includingphase)of verticalto horizontalmagneticfield,

and 2) the amplitudeof eitherthe horizontalor verticalfield. Non-
\

idealconditions(datawith errors,non-layeredstructures,and possibly

some layeredstructuk'eswith unfortunate¢(z)functions)lead either

to no spectrumwhich is consistentwith the dataor to severalspectra.

We havederivedthe Fr_chetkernelswhich can be used to Iteratively

improvea model e(z)until it fits the observedimpedancespectrumas

closelyas possible. We have consideredthe possibilitythat several

distinct impedancespectra may explain one set of observatidns. It is

also posstble that several distinct models ¢(z) l_y explain one

impedancespectrum.

A major contribution of this study is the demnstatton of the

usefulness of the phase measurement. Past applications of radio

tnterferometry have used instrumentation which measuredonly the

amplitude of the two componentsHz dnd Hx. By making the phase

measurement tt is possible to work the data back to a quantity (the

impedance)which is very closely tied to the structure. From a computa-

tional viewpoint, thts is considerably more efficient (see Fig. 3) because

we have eliminated a compdtattor,al Step in the Iteration loop of the

Inversion procedure. The computer ttme investment tn the etgenvector

determination will pay off if many iterations are required to converge

to the requiredstructure.
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, andnon-existentenergysource. Thecorrespondinganalysisfor a

dipole source Is under way. In the meantime, inversion of synthetic
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FIGURECAPTIONS

Ftgure 1

The ltne current transmitter 11as along the y-axts on the surface

of the dielectric halfspace. The recetver traverses tn the x dtr(ctton.i_ .,
Positive z ts up.

_ Ftgure 2

The received magnettc fteld strength varies with range from the

transmitter. The peak-and-null pattern ts due to interference between

waves of different veloctty traveling tn the vacuumand dielectric

halfspaces.

Ftgure 3a

Block diagram of data interpretation for masuremen_swtthout

relattve phase between components. Fourter transforms are performed

at each step of the Inversion. There ts no tnd|catton whether the

data are c_msistent wtth a layered model.

Figure 3b

Data Interpretation for measurementscontaining relattve phase.

Measurementsare transformed one ttme ;ather than rode1 parameters

betng transfomed many ttws. Etgenvector analysts gives an Indica-

tion of uniqueness and compatibility with a la.yered dielectric structure
model.
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